Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Evershed effect in sunspots as a siphon flow along a magnetic flux tube

Abstract

The Evershed effect1—a wavelength shift and profile asymmetry in the spectral lines observed from the outer regions of sunspots (the penumbra)—has been interpreted as a radial outflow of gas from the sunspot, but the dynamics of the flow have not been fully understood2. Although the Evershed effect seems to stop abruptly at the outer edge of the penumbra, the outflow itself must continue, though tracing its path has proved difficult. Theoretical3,4 and observational5,6,7 studies have suggested that much of the continuing flow may follow magnetic field lines that go below the visible surface of the Sun at or just beyond the edge of the penumbra, and recent observations have now confirmed this picture8. Here we show, using theoretical calculations based on a more realistic model, that the flow acts like a siphon3,9,10,11,12 which is driven along a magnetic flux tube by the pressure drop between the endpoints of the tube.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution with height of the penumbral magnetic field strength B pen, penumbral temperature T pen, and photospheric temperature T phot in the model ambient atmosphere.
Figure 2: Four examples of computed siphon flows.
Figure 3: Examples of a slower subcritical flow (case e) and a critical flow with a standing tube shock in the downstream leg of the arch (case f).

Similar content being viewed by others

References

  1. Evershed, J. Radial movement in Sun-spots. Mon. Not. R. Astron. Soc. 69, 454–457 (1909).

    Article  ADS  Google Scholar 

  2. Thomas, J. H. & Weiss, N. O. in Sunspots: Theory and Observations (eds Thomas, J. H. & Weiss, N. O.) 3–59 (Kluwer, Dordrecht, (1992).

    Google Scholar 

  3. Thomas, J. H. & Montesinos, B. Asiphon-flow model of the photospheric Evershed effect in a sunspot. Astrophys. J. 407, 398–401 (1993).

    Article  ADS  Google Scholar 

  4. Thomas, J. H. in Solar and Astrophysical Magnetohydrodynamic Flows (ed. Tsinganos, K. C.) 39–60 (Kluwer, Dordrecht, (1996)).

    Book  Google Scholar 

  5. Börner, P. & Kneer, F. High resolution observations of the Evershed flow. Astron. Astrophys. 259, 307–312 (1992).

    ADS  Google Scholar 

  6. Rimmele, T. R. Sun center observations of the Evershed effect. Astrophys. J. 445, 511–516 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Stanchfield, D. C. H., Thomas, J. H. & Lites, B. W. The vector magnetic field, Evershed flow, and intensity in a sunspot. Astrophys. J. 477, 485–494 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Westendorp Plaza, C. et al. Evidence for an Evershed flow returning into the Sun. Nature 389, 47–49 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Meyer, F. & Schmidt, H. U. Magnetisch ausgerichte Strömungen zwischen Sonnenflecken. Z. Angew. Math. Mech. 48, 218–221 (1968).

    Article  Google Scholar 

  10. Thomas, J. H. Siphon flows in isolated magnetic flux tubes. Astrophys. J. 333, 407–419 (1988).

    Article  ADS  Google Scholar 

  11. Degenhardt, D. Stationary siphon flows in thin magnetic flux tubes. II. Radiative heat exchange with the surroundings. Astron. Astrophys. 248, 637–646 (1991).

    ADS  MATH  Google Scholar 

  12. Thomas, J. H. in Solar Surface Magnetism (eds Rutten, R. J. & Schrijver, C. J.) 219–235 (Kluwer, Dordrecht, (1994)).

    Book  Google Scholar 

  13. Schmidt, H. U. Sunspots. Geophys. Astrophys. Fluid Dyn. 62, 249–270 (1991).

    Article  ADS  Google Scholar 

  14. Degenhardt, D. & Wiehr, E. Spatial variation of the magnetic field inclination in a sunspot penumbra. Astron. Astrophys. 252, 821–826 (1991).

    ADS  CAS  Google Scholar 

  15. Title, A. M. et al. On the magnetic and velocity field geometry of simple sunspots. Astrophys. J. 403, 780–796 (1993).

    Article  ADS  Google Scholar 

  16. Lites, B. W., Elmore, D. F., Seagraves, P. & Skumanich, A. P. Stokes profile analysis and vector magnetic fields. VI. Fine scale structure of a sunspot. Astrophys. J. 418, 928–942 (1993).

    Article  ADS  Google Scholar 

  17. Rimmele, T. R. Evidence for thin elevated Evershed channels. Astron. Astrophys. 298, 260–276 (1995).

    ADS  Google Scholar 

  18. Giovanelli, R. & Jones, H. P. Three-dimensional structure of atmospheric magnetic fields. Solar Phys. 79, 267–278 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Solanki, S. K., Rüedi, I. & Livingston, W. Infrared lines as probes of solar magnetic features. V. The magnetic structure of a simple sunspot and its canopy. Astron. Astrophys. 263, 399–350 (1992).

    ADS  Google Scholar 

  20. Solanki, S. K., Montavon, C. A. P. & Livingston, W. Infrared lines as probes of solar magnetic features. VII. On the nature of the Evershed effect in sunspots. Astron. Astrophys. 283, 221–231 (1994).

    ADS  Google Scholar 

  21. Shine, R. A. et al. High-resolution observations of the Evershed effect in sunspots. Astrophys. J. 430, 413–424 (1994).

    Article  ADS  Google Scholar 

  22. Montesinos, B. & Thomas, J. H. Siphon flows in isolated magnetic flux tubes. V. Radiative flows with variable ionization. Astrophys. J. 402, 314–325 (1993).

    Article  ADS  Google Scholar 

  23. Thomas, J. H. & Montesinos, B. Siphon flows in isolated magnetic flux tubes. IV. Critical flows with standing tube shocks. Astrophys. J. 375, 404–413 (1991).

    Article  ADS  Google Scholar 

  24. Nye, A. H., Thomas, J. H. & Cram, L. E. Dynamical phenomena in sunspots. II. A moving magnetic feature. Astrophys. J. 285, 381–385 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Spruit, H. C. in The Physics of Sunspots (eds Cram, L. E. & Thomas, J. H.) 359–368 (Sacramento Peak Observatory, (1991)).

    Google Scholar 

  26. Rimmele, T. R. On the temporal behaviour of the Evershed effect. Astron. Astrophys. 290, 972–982 (1994).

    ADS  CAS  Google Scholar 

  27. Schlichenmaier, R., Jahn, K. & Schmidt, H. U. in Advances in the Physics of Sunspots (eds Schmieder, B., del Toro Iniesta, J. C. & Vázquez, M.) 140–144 (ASP Conf. Ser. Vol. 118, Astron. Soc. Pacific, San Francisco, (1997)).

    Google Scholar 

  28. Vernazza, J. E., Avrett, E. H. & Loeser, R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Spruit, H. C. Amodel of the solar convection zone. Solar Phys. 34, 277–290 (1974).

    Article  ADS  Google Scholar 

  30. Kjeldseth Moe, O. & Maltby, P. The temperature of penumbral filaments. Solar Phys. 36, 101–108 (1974).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the authors of ref. 8 for discussions of their observations. B.M. was supported by a grant from the Spanish DGICYT, and J.H.T. was supported by a grant from NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesinos, B., Thomas, J. The Evershed effect in sunspots as a siphon flow along a magnetic flux tube. Nature 390, 485–487 (1997). https://doi.org/10.1038/37307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37307

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing