Abstract
PROJECTIONS of sea-level rise due to greenhouse warming often involve the assumption that increased water vapour pressure will enhance snow accumulation in cold regions of ice sheets, partially offsetting the increased melting of low-latitude and low-altitude ice1–3. To test whether this has been true in the past, we compare accumulation rates4 and temperatures derived from the oxygen isotope composition5 of ice in the deep core obtained by the Greenland Ice Sheet Project II (GISP2). We find that atmospheric circulation, not temperature, seems to have been the primary control on snow accumulation in central Greenland over the past 18,000 years. During both warm (Holocene) and cold (Younger Dryas, Last Glacial Maximum) climate regimes, the sensitivity of accumulation to temperature changes is less than expected if accumulation is controlled thermodynamically by the ability of warmer air to deliver more moisture. During transitions between warm and cold climate states, in contrast, accumulation varies more than can be explained in purely thermodynamic terms, probably because of changes in storm tracks. Thus, in a world warmed by the greenhouse effect, circulation changes may be more important than direct temperature effects in determining snow accumulation in Greenland and its contribution to sea-level change.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene
Nature Communications Open Access 16 April 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Wigley, T. M. L. & Raper, S. C. B. Nature 357, 293–300 (1992).
Oerlemans, J. Holocene 1, 40–49 (1991).
Peel, D. A. Weather 46, 95–102 (1991).
Alley, R. B. et al. Nature 362, 527–529 (1993).
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Nature 366, 552–554 (1993).
Taylor, K. C. et al. J. Glaciol. 38, 325–332 (1992).
Ram, M. & Illing, M. J. Glaciol. (in the press).
Schøtt, C., Waddington, E. D. & Raymond, C. F. J. Glaciol. 38, 162–168 (1992).
Taylor, K. C. et al. Nature 366, 549–552 (1993).
Cuffey, K. M., Alley, R. B., Grootes, P. M. & Anandakrishnan, S. Palaeogeogr. Palaeoclimatol. Palaeoecol. 98, 265–268 (1992).
Cuffey, K. M., Alley, R. B., Grootes, P. M., Bolzan, J. M. & Anandakrishnan, S. J. Glaciol. 40, 341–349 (1994).
Dansgaard, W. et al. Nature 364, 218–220 (1993).
Gundestrup, N. S., Dahl-Jensen, D., Johnson, S. J. & Rossi, A. Cold Regions Sci. Technol. 21, 399–402 (1993).
Johnsen, S. J., Dansgaard, W. & White, J. W. C. Tellus 41B, 452–468 (1989).
Dansgaard, W., White, J. W. C. & Johnsen, S. J. Nature 339, 532–534 (1989).
Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Science 263, 508–511 (1994).
Rind, D., Peteet, D., Broecker, W. S., Mclntyre, A. & Ruddiman, W. Clim. Dyn. 1, 3–33 (1986).
Fisher, D. A. in The Last Deglaciation: Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) 267–293 (NATO ASI Ser. I, Vol. 2, Springer, Berlin, 1992).
Robin, G. de Q. Phil. Trans. R. Soc. B280, 143–168 (1977).
Jouzel, J. et al. Quat. Res. 31, 135–150 (1989).
Fisher, D. A. et al. Nature 301, 205–209 (1983).
Clausen, H. B., Gundestrup, N. S., Johnsen, S. J., Bindschadler, R. & Zwally, H. J. Ann. Glaciol. 10, 10–15 (1988).
Benoist, J. P., Jouzel, J., Lorius, C., Merlivat, L. & Pourchet, M. Ann. Glaciol. 3, 17–22 (1992).
Kapsner, W. R. thesis, Pennsylvania State Univ. (1994).
Reeh, N. et al. J. Glaciol. 20, 27–30 (1978).
Dahl-Jensen, D., Johnsen, S. J., Hammer, C. U., Clausen, H. B. & Jouzel, in Ice in the Climate System (ed. Peltier, W. R.) 517–532 (NATO ASI Ser I, Vol. 12, Springer, Berlin, 1993).
Bromwich, D. H., Robasky, F. M., Keen, R. A. & Bolzan, J. F. Clim. 6, 1253–1268 (1993).
Serreze, M. C., Box, J. E., Barry, R. G. & Walsh, J. E. Met. Atmos. Phys. 51, 147–164 (1993).
Fisher, D. A. Cold Regions Sci. Technol. 21, 61–77 (1992).
Zwally, H. J. Science 246, 1589–1591 (1989).
Mayewski, P. A. et al. Science 261, 195–197 (1993).
Broecker, W. S. & Denton, G. H. Geochim. cosmochim. Acta 53, 2465–2501 (1989).
Warrick, R. & Oerlemans, J. in Climate Change (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) 257–281 (Cambridge Univ. Press, 1990).
Bromwich, D. H. & Robasky, F. M. Met. Atmos. Phys. 51, 259–274 (1993).
Meese, D. A. et al. Science (in the press).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kapsner, W., Alley, R., Shuman, C. et al. Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373, 52–54 (1995). https://doi.org/10.1038/373052a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/373052a0
This article is cited by
-
Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene
Nature Communications (2018)
-
Present and future climates of the Greenland ice sheet according to the IPCC AR4 models
Climate Dynamics (2011)
-
Global warming and the stability of the West Antarctic Ice Sheet
Nature (1998)
-
Deglacial changes in ocean circulation from an extended radiocarbon calibration
Nature (1998)
-
Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods
Nature (1996)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.