Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size and morphology of the Chicxulub impact crater


The Chicxulub impact in Mexico has been linked to the mass extinction of species at the end of the Cretaceous period. From seismic data collected across the offshore portion of the impact crater, the diameter of the transient cavity is determined to be about 100 km. This parameter is critical for constraining impact-related effects on the Cretaceous environment, with previous estimates of the cavity diameter spanning an order of magnitude in impact energy. The offshore seismic data indicate that the Chicxulub crater has a multi-ring basin morphology, similar to large impact structures observed on other planets, such as Venus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Chicxulub seismic experiment.
Figure 2: Seismic reflection data along part of Chicx-A and Chicx-C; the data are unmigrated.
Figure 3: Seismic sections showing deformation of the target stratigraphy.
Figure 4: Reconstruction of the rim of the transient cavity.

Similar content being viewed by others


  1. Alvarez, L. W., Alvarez, W., Azaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Hildebrand, A. R. et al. Apossible Cretaceous–Tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19, 867–871 (1991).

    Article  ADS  Google Scholar 

  3. Swisher, C. C. II et al. Coeval40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous–Tertiary boundary tektites. Science 257, 954–958 ( 1992).

    Article  ADS  CAS  Google Scholar 

  4. Sharpton, V. L. et al . Chicxulub multi-ring impact basin: Size and other characteristics derived from gravity analysis. Science 261, 1564–1567 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Pope, K. O., Ocampo, A. C. & Duller, C. E. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico. Earth Moon Planets 63, 93–104 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Camargo-Zanoguera, A. & Suarez-Reynooso, G. Evidencia Sismica del crater impacto de Chicxulub, G. Bol. Asoc. Mex. Geof. Expl. 34, 1–28 ( 1994).

    Google Scholar 

  7. Ward, W. C., Keller, G., Stinnesbeck, W. & Adatte, T. Yucatan subsurface stratigraphy: Implications and constraints for the Chicxulub impact. Geology 23, 873– 876 (1995).

    Article  ADS  Google Scholar 

  8. Pope, K. O., Ocampo, A. C., Kinsland, G. L. & Smith, R. Surface expression of the Chicxulub crater. Geology 24, 527–530 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Pilkington, M., Hildebrand, A. R. & Ortiz-Alemann, C. Gravity and magnetic field modelling and structure of the Chicxulub crater, Mexico. J. Geophys. Res. 99, 13147–13162 (1994).

    Article  ADS  Google Scholar 

  10. Espindola, J. M., Mena, M., de la Fuente, M. & Campos-Enriqquez, J. O. Amodel of the Chicxulub impact structure (Yucatan, Mexico) based on gravity and magnetic signatures. Phys. Earth Planet. Inter. 92, 271–278 (1995).

    Article  ADS  Google Scholar 

  11. Hildebrand, A. R. et al. Size and structure of the Chicxulub crater revealed by horizontal gravity gradients. Nature 376, 415–417 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Sharpton, V. L. et al . Model of the Chicxulub impact basin. Geol. Soc. Am. Spec. Pap. 307, 55–74 (1996).

    Google Scholar 

  13. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, (1989)).

    Google Scholar 

  14. Alexopoulos, J. S. & McKinnon, W. B. Large impact craters and basins on Venus, with implications for ring mechanics on the terrestrial planets. Geol. Soc. Am. Spec. Pap. 293, 29–50 (1994).

    Google Scholar 

  15. Urrutia-Fucugauchi, J., Marin, L. & Trejo-Garciaa, A. UNAM Scientific drilling program of the Chicxulub impact structure—Evidence for a 300-kilometre crater diameter. Geophys. Res. Lett. 23, 1565–1568 (1996).

    Article  ADS  Google Scholar 

  16. Warner, M. R. Basalts, water or shear zones in the lower continental crust? Tectonophysics 173, 163–174 (1990).

    Article  ADS  Google Scholar 

  17. Croft, S. K. Cratering flow fields: Implications of the excavation and transient expansion stages of crater formation. Proc. 11th Lunar Planet. Sci. Conf. 2347–2378 (Pergamon, New York, ( 1980).

  18. Hörz, F., Ostertag, R. & Rainey, D. A. Bunte Breccia of the Ries: Continuous deposits of large craters. Rev. Geophys. Space Phys. 21, 1667–1725 (1983).

    Article  ADS  Google Scholar 

  19. Holsapple, K. A. & Schmidt, R. M. On the scaling of crater dimensions 2. Impact processes. J. Geophys. Res. 87, 1849–1870 (1982).

    Article  ADS  Google Scholar 

  20. D'Hondt, S. et al. Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22, 983– 986 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth Planet. Sci. Lett. 128 , 719–725 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Ivanov, B. A. et al . Degassing of sedimentary rocks due to Chicxulub impact: Hydrocode and Physical simualtions. Geol. Soc. Am. Spec. Pap. 307, 125–140 (1996).

    Google Scholar 

  23. Schultz, P. H. & Merrill, R. B. Multi-ring Basins (Pergamon, New York, (1981)).

    Google Scholar 

  24. Melosh, H. J. & McKinnon, W. B. The mechanics of ringed basin formation. Geophys. Res. Lett. 5, 985– 988 (1978).

    Article  ADS  Google Scholar 

  25. Alexopoulos, J. S. & McKinnon, W. B. Multiringed impacts on Venus: An overview from Arecibo and Venera images, and initial Magellan data. Icarus 100, 347– 363 (1992).

    Article  ADS  Google Scholar 

  26. Spray, J. G. Super faults. Geology 25, 579– 582 (1997).

    Article  ADS  Google Scholar 

  27. Spray, J. G. & Thompson, L. M. Friction melt distribution in a multi-ring impact basin. Nature 373, 130 –132 (1996).

    Article  ADS  Google Scholar 

Download references


The reflection seismic data were acquired by BIRPS and funded by the Natural Environment Research Council and the BIRPS Industrial Associates programme. The project also received funding from the National Science Foundation, the Leverhulme Trust, the Royal Society, and the Royal Commission for the Exhibition of 1851. The data were acquired by Geco-Prakla and processed by Bedford Interactive Processing Services. We thank Petroleos Mexicanos for releasing their seismic data to us.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mike Warner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, J., Warner, M., the Chicxulub Working Group et al. Size and morphology of the Chicxulub impact crater. Nature 390, 472–476 (1997).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing