Formation and inactivation of endogenous cannabinoid anandamide in central neurons

Abstract

ANANDAMIDE (N-arachidonoyl-ethanolamine) was recently identified as a brain arachidonate derivative that binds to and activates cannabinoid receptors1–4, yet the mechanisms underlying formation, release and inactivation of this putative messenger molecule are still unclear. Here we report that anandamide is produced in and released from cultured brain neurons in a calcium ion-dependent manner when the neurons are stimulated with membrane-depolarizing agents. Anandamide formation occurs through phos-phodiesterase-mediated cleavage of a novel phospholipid precursor, N-arachidonoyl-phosphatidylethanolamine. A similar mechanism also governs the formation of a family of anandamide congeners, whose possible roles in neuronal signalling remain unknown. Our results and those of others5,6indicate therefore that multiple biochemical pathways may participate in anandamide formation in brain tissue. The life span of extracellular anandamide is limited by a rapid and selective process of cellular uptake, which is accompanied by hydrolytic degradation to ethanolamine and arachidonate. Our results thus strongly support the proposed role of anandamide as an endogenous neuronal messenger.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Devane, W. A. et al. Science 258, 1946–1949 (1992).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Felder, C. C. et al. Proc. natn. Acad. Sci. U.S.A. 90, 7656–7660 (1993).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pertwee, R. G., Stevenson, L. A. & Griffin, G. Br. J. Pharmac. 110, 1483–1490 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Mackie, K., Devane, W. A. & Hille, B. Molec. Pharmac. 44, 498–503 (1993).

    CAS  Google Scholar 

  5. 5

    Kruszka, K. K. & Gross, R. W. J. biol. Chem. 269, 14345–14348 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Devane, W. A. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 91, 6698–6701 (1994).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Piomelli, D. Crit. Rev. Neurobiol. 8, 65–83 (1994).

    CAS  PubMed  Google Scholar 

  8. 8

    Bito, H. et al. Neuron 9, 285–294 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Kato, K., Clark, G. D., Bazan, N. G. & Zorumski, C. F. Nature 367, 175–179 (1994).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Lu, B., Yokoyama, M., Dreyfus, C. F. & Black, I. J. Neurosci. 11, 318–326 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Schmid, P. C., Zuzarte-Augustin, M. L. & Schmid, H. O. J. biol. Chem. 260, 14145–14149 (1985).

    CAS  PubMed  Google Scholar 

  12. 12

    Colodzin, M., Bachur, N. R., Weissbach, H. & Udenfriend, S. Biochem. biophys. Res. Commun. 10, 165–170 (1963).

    CAS  Article  Google Scholar 

  13. 13

    Deutsch, D. G. & Chin, S. A. Biochem. Pharmac. 46, 791–796 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Matsumoto, M. & Miwa, M. Biochim. biophys. Acta 296, 350–364 (1973).

    CAS  Article  Google Scholar 

  15. 15

    Epps, D. E., Natarajan, V., Schmid, P. C., & Schmid, H. H. O. Biochim. biophys. Acta 618, 420–430 (1980).

    CAS  Article  Google Scholar 

  16. 16

    Schmid, H. O. H., Schmid, P. C. & Natarajan, V. Progr. Lipid Res. 29, 1–43 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Natarajan, V., Schmid, P. C., Reddy, P. V. & Schmid, H. H. O. J. Neurochem. 42, 1613–1619 (1984).

    CAS  Article  Google Scholar 

  18. 18

    Schmid, P. C., Reddy, P. V., Natarajan, V. & Schmid, H. H. O. J. biol. Chem. 258, 9302–9306 (1983).

    CAS  PubMed  Google Scholar 

  19. 19

    Epps, D. E., Mandel, F. & Schwartz, A. Cell Calcium 3, 531–543 (1982).

    CAS  Article  Google Scholar 

  20. 20

    Gulaya, N. M. et al. Biochim. biophys. Acta 1152, 280–288 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Yue, T.-L. & Feuerstein, G. Z. Crit. Rev. Neurobiol. 8, 11–24 (1994).

    CAS  PubMed  Google Scholar 

  22. 22

    Huettner, J. E. & Boughman, R. W. J. Neurosci. 6, 3044–3060 (1986).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Marzo, V., Fontana, A., Cadas, H. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994). https://doi.org/10.1038/372686a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing