Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide in skeletal muscle

Abstract

REACTIVE oxygen intermediates modulate skeletal muscle contraction1,2, but little is known about the role of nitric oxide (NO). Here we show that rat skeletal muscle expresses neuronal-type NO synthase and that activity varies among several respiratory and limb muscles. Immunohistochemistry showed prominent staining of type II (fast) fibre cell membranes with antibodies against neuronal-type NO synthase. NO synthase activity in muscles correlated with type II fibre density. Resting diaphragm muscle produced detectable NOx, but no reactive oxygen intermediates. In contrast, actively contracting muscle generated increased levels of reactive oxygen intermediates. Contractile function was augmented by blockers of NO synthase, extracellular NO chela-tion, and guanylyl cyclase inhibition; it was depressed by NO donors and by increased levels of cyclic GMP. Force–frequency plots of different muscles showed an inverse correlation between NO synthase activity and force development. Our results support two physiological functions of NO in skeletal muscle. The first is to promote relaxation through the cGMP pathway3,4. The second is to modulate increases in contraction that are dependent on reactive oxygen intermediates and which are thought to occur through reactions with regulatory thiols on the sarcoplasmic reticulum5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reid, M. B. et al. J. appl. Physiol. 73, 1797–1804 (1992).

    Article  CAS  Google Scholar 

  2. Reid, M. B., Khawli, F. & Moody, M. J. appl. Physiol. 75, 1081–1087 (1993).

    Article  CAS  Google Scholar 

  3. Schmidt, H., Lohmann, S. & Walter, U. Biochim. biophys. Acta 1178, 153–175 (1993).

    Article  CAS  Google Scholar 

  4. Stamler, J. S., Singel, D. S. & Loscalzo, J. Science 258, 1898–1902 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Abramson, J. J. & Salama, G. J. Bioenerg. Biomemb. 21, 283–294 (1989).

    Article  CAS  Google Scholar 

  6. Trimm, J. L., Salama, G. & Abramson, J. J. J. biol. Chem. 261, 16092–16096 (1986).

    CAS  PubMed  Google Scholar 

  7. Kobzik, L. et al. Amer. J. Respir. cell. mol. Biol. 9, 371–377 (1993).

    Article  CAS  Google Scholar 

  8. Nakane, M., Schmidt, H., Pollock, J., Fostermann, U. & Murad, F. FEBS Lett. 316, 175–180 (1993).

    Article  CAS  Google Scholar 

  9. Armstrong, R. & Phelps, R. Am. J. Anat. 171, 259–272 (1984).

    Article  CAS  Google Scholar 

  10. Metzger, J., Scheidt, K. & Fitts, R. J. appl. Physiol. 58, 1085–1091 (1985).

    Article  CAS  Google Scholar 

  11. Bianchi, C. in Cellular Pharmacology of Excitable Tissues (ed. Narahashi, T.) 485–519 (Charles C. Thomas, Springfield, Illinois, 1975).

    Google Scholar 

  12. Stull, J. Adv. cyclic Nucleotide Res. 13, 39–93 (1980).

    ADS  CAS  PubMed  Google Scholar 

  13. Weishaar, R., Burrows, S., Kobylarz, D., Quade, M. & Evans, D. Biochem. Pharmacol. 35, 787–800 (1986).

    Article  CAS  Google Scholar 

  14. Arnold, W. P., Mittal, C., Katsuki, S. & Murad, F. Proc. natn. Acad. Sci. U.S.A. 74, 3203–3207 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Reid, M. B., Shoji, T., Moody, M. & Entman, M. J. appl. Physiol. 73, 1805–1809 (1992).

    Article  CAS  Google Scholar 

  16. Ehrenberg, A. & Fzczepkowski, T. Acta chem. scand. 14, 1684–1692 (1960).

    Article  CAS  Google Scholar 

  17. Kucera, I., Kozak, L. & Dudak, Z. Biochem. biophys. Acta 894, 120–126 (1987).

    CAS  Google Scholar 

  18. Bell, L. & Ferguson, J. Biochem. J. 273, 423–427 (1991).

    Article  CAS  Google Scholar 

  19. Kanner, J., Harel, S. & Granit, R. Lipids 27, 46–49 (1992).

    Article  CAS  Google Scholar 

  20. Scherer, N. & Deamer, D. Arch. Biochem. Biophys. 246, 589–601 (1986).

    Article  CAS  Google Scholar 

  21. Byrd, S. FASEB J. 7, A526 (1993).

    Google Scholar 

  22. Lipton, S. A. et al. Nature 364, 626–632 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Stamler, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 444–448 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Stamler, J. S. Cell 78, 931–936 (1994).

    Article  CAS  Google Scholar 

  25. Wu, M. et al. Amer. J. Physiol. 266, H2108–H2113 (1994).

    CAS  PubMed  Google Scholar 

  26. Mohr, S., Stamler, J. S. & Brune, B. FEBS Lett. 348, 223–227 (1994).

    Article  CAS  Google Scholar 

  27. Bredt, D. S., Hwang, P. & Snyder, S. H. Nature 347, 768–770 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Wescott, S., Nutman, T., Slater, J. & Kaliner, M. J. cyclic Nucleotide Prot. Phosphoryl. Res. 10, 189–196 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobzik, L., Reid, M., Bredt, D. et al. Nitric oxide in skeletal muscle. Nature 372, 546–548 (1994). https://doi.org/10.1038/372546a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372546a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing