
NEWS AND VIEWS 

Problems of more than one electron 
The spectrum of helium and other atoms with two electrons has been a bother since the early days of quantum 
mechanics. And there are perplexing issues outstanding still. 

THE darkest days of the quantum theory 
must have been the decade or so between the 
appearance of Bohr's semi-classical theory 
of electron orbits and the first appearance of 
modem quantum theory more than a decade 
later. Bohr had given a persuasive account 
of the hydrogen atom, accounting for the 
regularities of the Periodic Table in the 
process, but despite the efforts of people 
such as Sommerfeld, nobody could make 
much sense of the measured spectrum of 
helium, the simplest electron configuration 
after hydrogen. Was Bohr's account of the 
hydrogen atom flawed in its assumptions? 

By the mid-1920s, after Heisenberg and 
Schrodinger, the origin of the difficulty (but 
not its resolution) must have been plain. 
With helium just as with hydrogen, there 
will indeed be a series of states in which a 
helium atom can exist, but calculating them 
from first principles is a bother because of 
the need to take account of the electrostatic 
repulsion between the two electrons. 

Even enumerating the states accurately 
is not straightforward. The obvious classifi
ers to use are the total angular momentum of 
a state and its projection along some axis, 
but who could guess which one-electron 
states must be mixed together to make the 
states the spectroscopists observe? 

Formally, there is no great difficulty. 
Simply take a complete set ofwavefunctions 
representing electrons in a hydrogen atom, 
mix them all together with undetermined 
coefficients, substitute that mixture in the 
relevant Schrodinger's equation and solve 
the resulting linear algebraic equations. 
There are two important snags. Experience 
has shown that it is necessary to use hun
dreds, even thousands, of wavefunctions to 
get reasonably accurate results - and the 
size of the matrix equation that must be solved 
is identical with the number of wavefunctions, 
say M, used as a starting point. 

The second and more serious difficulty is 
that somebody has to evaluate M(M-1)12 
integrals, one for each distinct pair of the 
basis functions, in which the integrand is the 
product of the pair of wavefunctions, each 
of which is a function of the space coordi
nates of one or other of the two electrons in 
a helium atom; that product is then divided 
by the geometrical distance between the two 
coordinate points and the integration is car
ried out over all six coordinates from zero to 
infinity. Even when it is commonplace to 
use simplified wavefunctions in the calcula
tions, who can wonder that serious attempts 
at the accurate calculation of atoms beyond 
hydrogen began only in the 1970s (when 
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computers began to make their mark)? 
Now, there seem to be two approaches to 

the problem: computational and reflective. 
S.P. Goldman from the University of West
em Ontario, seems to have struck oil in the 
search for better ways of computing elec
tronic states (Phys. Rev. Lett. 73, 2547-
2550; 1994). For one thing, he has found a 
neat way of dealing with the especially 
brutish feature of the integrals occurring in 
these problems, which consists of a cusp
like feature in the electrostatic potential 
when the two electrons are equidistant from 
the helium nucleus and which comes about 
because the potential energy would be liter
ally infinite ifthe two electrons occupied the 
same point. He has also modified the stand
ard set of simplified wavefunctions due to 
J.C. Slater to give the inner and outer elec
trons different distributions in space. 

The immediate result is that many fewer 
wavefunctions are needed to win accurate 
results. Goldman reckons to have calculated 
the energy of the ground state of helium to 
within 4.6 parts in I 09

, at least three orders 
of magnitude better than previous results, 
by using "only" 305 starting functions. For 
good measure, he used only a desk-top 
workstation for the arithmetic. 

The reflective one is Michael E. Kellman 
from the University of Oregon at Eugene, 
and almost literally so. Not often, these 
days, is an author given space to rehearse his 
past contributions to the literature of his 
subject, but Kellman seems to have won that 
privilege from a journal notoriously tight
fisted with paper (Phys. Rev. Lett. 73, 2543-
2547; 1994). But the circumstances are ex
ceptional; Kellman has had an important 
afterthought 20 years after the event. 

He and D.R. Herrick were pioneers in the 
1970s of the pursuit of the two-electron 
atom and its spectra. Unlike many others, 
they had a physical model to guide them. As 
electrons repel each other, will they not tend 
to be found on the opposite sides of the 
nucleus? That makes a helium atom a kind 
of triatomic molecule, but one in which the 
supposed bonds holding the outlying elec
trons to the nucleus are simply their mutual 
electrostatic repulsion. So the bonds, on this 
analogy, have very small force constants. 

Herrick, Kellman and their contempo
raries in the early 1970s made much of this 
analogy. Vastly improving on what 
Sommerfeld has attempted half a century 
earlier, they were able to conjecture what 
states would arise in helium if each of the 
electrons were excited above the ground 
state, not necessarily to the same degree. 

Theypredictedmultipletsofstatesandgroup
ings thereof (called supermultiplets), find
ing confirmation in the data. 

And the afterthought? It should be possi
ble to classify the states of a two-electron 
atom by the choice of an appropriate 
symmmetry group. That is how group theory, 
without the intervention of conventional 
algebra, can by itself be used to show that 
the states of one-electron atoms are pre
cisely those found in the laboratory or by 
solving the appropriate Schrodinger equa
tion algebraically. 

In the 1970s, Herrick and Kellman were 
already guessing that the three-dimensional 
rotation group that accounts for the proper
ties of the angular momentum of one-elec~ 
tron orbits would not suffice for their floppy 
triatomic molecules, and were guessing that 
they would have to use the four-dimensional 
orthogonal group called 0( 4) instead. The 
use ofthe three-dimensional analogue, 0(3 ), 
which works well enough for one-electron 
atoms, leads directly to the slow conver
gence and poor approximation that Goldman 
is seeking to circumvent. 

The more tangible part of what Kellman 
has now done is to apply the formalism of 
classification by 0(4) to cases in which, in 
the approximation in which the classifica
tion at first ignores the electrostatic repul
sion between electrons, two electrons have 
different principal quantum numbers. More 
multiplets and supermultiplets fall out of 
that. It turns out that the classification is best 
represented by quantities such as the mo
mentum (quantized, of course) locked up in 
the bending vibrations ofthe floppy triatomic 
molecules, which quantities function as 
quantum numbers for the multiplets and 
supermultiplets. People working in the field 
will be waiting eagerly for the details. 

Meanwhile, there is a puzzle: the 0(4) 
group, or more strictly its unitary equivalent 
U(4), keeps throwing up extra terms, which 
seem not to fit in well with the classification 
ofthe states oftwo-electron atoms and which 
have no obvious physical meaning. Could 
they represent some collective motion of 
two electrons bound to a nucleus that no
body has yet thought of? Kellman thinks 
that unlikely, but there is no other obvious 
way round the difficulty. Is this one of the 
rare cases in which mathematics has failed 
to be ready with a solution to physicists' 
problems? Or is the model of the triatomic 
molecule inappropriate? The conjuction of 
the two papers by Kellman and Goldman 
will send many people scurrying in search of 
an explanation. John Maddox 
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