Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental simulations of explosive degassing of magma

Abstract

THE violent release of volatiles in explosive volcanic eruptions is known to cause fragmentation of magma and acceleration of the resulting mixture of gas and pyroclasts to velocities exceeding 100 m s-1 (ref. 1). But the mechanisms underlying bubble nuclea-tion, flow acceleration and fragmentation are complex and poorly understood. To gain insight into these phenomena, we have simu-lated explosive eruptions using two model systems that generate expansion rates and flow velocities comparable to those observed in erupting volcanos. The key feature of both experiments is the generation of large supersaturations of carbon dioxide in a liquid phase, achieved either by decompressing CO2-saturated water or by rapid mixing of concentrated K2CO3 and HC1 solutions. We show that liberation of CO2 from the aqueous phase is enhanced by violent acceleration of the mixture, which induces strong exten-sional strain in the developing foam. Fragmentation then occurs when the bubble density and expansion rate are such that the bubble walls rupture. In contrast to conventional models of fragmentation1,2, we find that expansion and acceleration precede—and indeed cause—fragmentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Geophys. J. R. astr. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  2. Sparks, R. S. J. J. Volcan. geotherm. Res. 3, 1–37 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Bennett, F. D. Nature 234, 538–539 (1971).

    Article  ADS  Google Scholar 

  4. Kieffer, S. W. & Sturtevant, B. J. geophys. Res. 89, 8253–8268 (1984).

    Article  ADS  Google Scholar 

  5. Hill, L. G. & Sturtevant, B. in Adiabatic Waves in Liquid-Vapor Systems (eds Meier, G. E. A. & Thompson, P. A.) 25–37 (Springer, Berlin, 1990).

    Book  Google Scholar 

  6. Anilkumar, A. V. thesis, California Inst. Technol. (1989).

  7. Anilkumar, A. V., Sparks, R. S. J. & Sturtevant, B. J. Volcan. geotherm. Res. 56, 145–160 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Barnea, D. & Taitel, Y. in Encyclopedia of Fluid Mechanics (ed. Cheremisinoff, N. P.) Ch. 16 (Gulf, Houston, 1985).

    MATH  Google Scholar 

  9. Wilson, L. J. Volcan. geotherm. Res. 8, 297–313 (1980).

    Article  ADS  Google Scholar 

  10. Sangani, A. S. in Encyclopedia of Fluid Mechanics (ed. Cheremisinoff, N. P.) Ch. 5 (Gulf, Houston, 1985).

    Google Scholar 

  11. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, 1984).

    Google Scholar 

  12. Zhang, Y., Stolper, E. M. & Wasserburg, G. J. Geochim. cosmochim. Acta, 1, 1–16 (1990).

    Google Scholar 

  13. Zhang, Y., Stolper, E. M. & Wasserburg, G. J. Earth planet. Sci. Lett. 103, 228–240 (1990).

    Article  ADS  Google Scholar 

  14. Dobran, F. J. Volcan. geotherm Res. 49, 285–311 (1992).

    Article  ADS  Google Scholar 

  15. Navon, O. & Hurwitz, S. Terra abstr. 5, 574 (1993).

    Google Scholar 

  16. Sparks, R. S. J. & Brazier, S. Nature 295, 218–220 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Whitham, A. G. & Sparks, R. S. J. Bull. volcan. 48, 209–223 (1986).

    Article  ADS  Google Scholar 

  18. Toramaru, A. J. geophys Res. 94, 17523–17542 (1989).

    Article  ADS  Google Scholar 

  19. van Wijngaarden, L. Int. J. Heat Mass Transfer 10, 127–134 (1967).

    Article  CAS  Google Scholar 

  20. Peebles, F. N. & Garber, H. J. Chem. Engng. Prog. 49, 88–97 (1953).

    CAS  Google Scholar 

  21. Dingwell, D. B. & Webb, S. L. Phys. Chem. Miner. 16, 508–516 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Scherer, G. W. Relaxation in Glass and Composites (Wiley, New York, 1986).

    Google Scholar 

  23. Klug, C. & Cashman, K. V. (abstr.) EOS 72, 312 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mader, H., Zhang, Y., Phillips, J. et al. Experimental simulations of explosive degassing of magma. Nature 372, 85–88 (1994). https://doi.org/10.1038/372085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372085a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing