Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid climate transitions in a coupled ocean–atmosphere model

Abstract

RECENT geochemical data1,2 have challenged the view that rapid climate fluctuations in the North Atlantic at the end of the last glacial were caused by the thermohaline circulation of the ocean being switched 'on' or 'off'. Instead, these data suggest that the circulation pattern must have switched between a warm, deep mode and a cold, shallow mode, probably associated with different sites of deep convection3. Here I present simulations with a three-dimensional ocean model, coupled to an idealized atmosphere, which show this kind of transition. The mechanism for the transition is a rearrangement of convection in the North Atlantic, triggered by a brief freshwater pulse. This results in a drop in sea surface temperature in the North Atlantic by up to 5 °C within less than 10 years. The rate of North Atlantic Deep Water (NADW) forma-tion is the same in the cold climate as in the warm climate, but NADW sinks to intermediate depths only, while Antarctic Bottom Water pushes north to fill the entire abyssal Atlantic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Veum, T. et al. Nature 356, 783–785 (1992).

    ADS  Article  Google Scholar 

  2. 2

    Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    ADS  Article  Google Scholar 

  3. 3

    Zahn, R. Nature 356, 744–746 (1992).

    ADS  Article  Google Scholar 

  4. 4

    Boyle, E. A. & Keigwin, L. Nature 330, 35–40 (1987).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Keigwin, L. D. et al. J. geophys. Res. 96, 16811–16826 (1991).

    ADS  Article  Google Scholar 

  6. 6

    Trenberth, K. E. & Solomon, A. Clim. Dyn. 10, 107–134 (1994).

    Article  Google Scholar 

  7. 7

    Levitus, S. Climatological Atlas of the World Ocean (US Dept of Commerce, NOAA, Washington DC, 1982).

    Google Scholar 

  8. 8

    Manabe, S. & Stouffer, R. J. J. Clim. 1, 841–866 (1988).

    ADS  Article  Google Scholar 

  9. 9

    Maier-Reimer, W. & Mikolajewicz, U. in Oceanography (eds Ayala-Castan̄ares, A., Wooster, W. & Yán̄ez-Arancibia, A.) 87–100 (UNAM, México, 1989).

    Google Scholar 

  10. 10

    Marotzke, J. & Willebrand, J. J. phys. Oceanogr. 21, 1372–1385 (1991).

    ADS  Article  Google Scholar 

  11. 11

    Haney, R. L. J. phys. Oceanogr. 1, 241–248 (1971).

    ADS  Article  Google Scholar 

  12. 12

    Rahmstorf, S. & Willebrand, J. J. phys. Oceanogr. (in the press).

  13. 13

    Sarnthein, M. et al. Paleoceanography 9, 209–267 (1994).

    ADS  Article  Google Scholar 

  14. 14

    Kushnir, Y. J. Clim. 7, 142–157 (1994).

    ADS  Article  Google Scholar 

  15. 15

    Rahmstorf, S. J. Clim. (in the press).

  16. 16

    Stommel, H. Tellus 13, 224–230 (1961).

    ADS  Article  Google Scholar 

  17. 17

    Welander, P. Dyn. Atmos. Oceans 6, 233–242 (1982).

    ADS  Article  Google Scholar 

  18. 18

    Lenderink, G. & Haarsma, R. J. J. phys. Oceanogr. 24, 1480–1493 (1994).

    ADS  Article  Google Scholar 

  19. 19

    Fairbanks, R. G. Nature 342, 637–642 (1989).

    ADS  Article  Google Scholar 

  20. 20

    Weaver, A. J. & Hughes, T. M. C. Nature 367, 447–450 (1994).

    ADS  Article  Google Scholar 

  21. 21

    Send, U. & Marshall, J. J. phys. Oceanogr. (in the press).

  22. 22

    Lehman, S. J. & Keigwin, L. D. Nature 358, 197–198 (1992).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rahmstorf, S. Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372, 82–85 (1994). https://doi.org/10.1038/372082a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing