Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of soil organic matter in sustaining soil fertility


MANY tropical soils are poor in inorganic nutrients and rely on the recycling of nutrients from soil organic matter to maintain fertility. In undisturbed rainforests such nutrients are recycled via the litter1; 'slash-and-burn' agriculture, meanwhile, depends on the mineralization of organic nutrients from the plant remains2,3 or on (short-lived) inputs from ash4. This dependence on organic nutrients in tropical soils has the result that tests of soil quality which only give isolated measures of inorganic nutrient status are unreliable5, and that the effects of fertilization can be inconsistent because of leaching or fixation of inorganic nutrients. Here we attempt to quantify the role of organic matter in sustaining the fertility of soils from three different climate zones. We estimate rates of carbon turnover from ecological measurements and 14C dating, and determine its relation to the soil carbon and nutrient budgets. We find that agriculture without supplementary fertilization was economical for 65 years on temperate prairie and for six years in a tropical semi-arid thorn forest. An extremely nutrient-poor Amazonian soil showed no potential for agriculture beyond the three-year lifespan of the forest litter mat, once biological nutrient cycles were interrupted by slash-burning. These observations suggest that quantification of organic-matter cycling may provide an important guide to the agricultural potential of soils.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Medina, E. & Cuevas, E. in Mineral Nutrients in Tropical Forest and Savanna Ecosystems (ed. Proctor, J.) 217–240 (Blackwell Scientific, Oxford, 1989).

    Google Scholar 

  2. 2

    Mueller-Harvey, I., Juo, A. S. R. & Wild, A. J. Soil Sci. 36, 585–591 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Tiessen, H., Salcedo, I. H. & Sampaio, E. V. S. B. Agric. Ecosyst. Envir. 38, 139–151 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Stromgaard, P. Pl. Soil 80, 307–320 (1984).

    CAS  Article  Google Scholar 

  5. 5

    Adepetu, J. A. & Corey, R. B. Soil Sci. 122, 159–164 (1976).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Tiessen, H. & Stewart, J. W. B. Soil Sci. Soc. Am. J. 47, 509–514 (1983).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Vitorello, V. A., Cerri, C. C., Andreux, F., Feller, C. & Victória, R. L. Soil Sci. Soc. Am. J. 53, 773–778 (1989).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Feller, C., Guiraud, G., Hetier, J. M. & Morel, C. Int. J. trop. Agric. 1, 123–130 (1983).

    Google Scholar 

  9. 9

    Cuevas, E. & Medina, E. Oecologia 68, 466–472 (1986).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cuevas, E. & Medina, E. Oecologia 76, 222–235 (1988).

    ADS  Article  Google Scholar 

  11. 11

    Martel, Y. A. & Paul, E. A. Can. J. Soil Sci. 54, 419–426 (1974).

    CAS  Article  Google Scholar 

  12. 12

    Tiessen, H., Stewart, J. W. B. & Moir, J. O. J. soil Sci. 34, 815–823 (1984).

    Article  Google Scholar 

  13. 13

    Harrison, K. G., Broecker, W. S. & Bonani, G. Science 262, 725–726 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    O'Brien, J. Soil Biol. Biochem. 16, 115–120 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Harkness, D. D., Harrison, A. F. & Bacon, P. J. Radiocarbon 28, 328–337 (1986).

    CAS  Article  Google Scholar 

  16. 16

    Trumbore, S. E. Globl Biogeochem. Cycles 7, 275–290 (1993).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sanford, R. L. J. trop. For. Sci. 1, 268–279 (1989).

    Google Scholar 

  18. 18

    Stark, N. & Spratt, M. Trop. Ecol. 18, 1–9 (1977).

    CAS  Google Scholar 

  19. 19

    Uhl, C. J. Ecol. 75, 377–407 (1987).

    Article  Google Scholar 

  20. 20

    Stark, N. & Jordan, C. Ecology 59, 434–437 (1978).

    CAS  Article  Google Scholar 

  21. 21

    Worbes, M. & Junk, W. J. Ecology 70, 503–507 (1989).

    Article  Google Scholar 

  22. 22

    Saleck, J., Herrerea, R. & Jordan, C. F. Biotropica 15, 1–7 (1983).

    Article  Google Scholar 

  23. 23

    Saldarriaga, J. G., West, D. C., Tharp, M. L. & Uhl, C. J. Ecol. 76, 938–958 (1988).

    Article  Google Scholar 

  24. 24

    Cuevas, E. & Medina, E. in Root Ecology and its Practical Application (eds Böhm, W., Kutschera, L. & Lichtenegger, E.) 653–666 (Bundesanstalt für Alpenländische Landwitschaft, Irdning, Austria, 1983).

    Google Scholar 

  25. 25

    Sanchez, P. A. & Benites, J. R. Science 238, 1521–1527 (1987).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Fernside, P. Bioscience 37, 209–214 (1987).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tiessen, H., Cuevas, E. & Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 371, 783–785 (1994).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing