Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Classification of chemical bonds based on topological analysis of electron localization functions

Abstract

THE definitions currently used to classify chemical bonds (in terms of bond order, covalency versus ionicity and so forth) are derived from approximate theories1–3 and are often imprecise. Here we outline a first step towards a more rigorous means of classification based on topological analysis of local quantum-mechanical functions related to the Pauli exclusion principle. The local maxima of these functions define 'localization attractors', of which there are only three basic types: bonding, non-bonding and core. Bonding attractors lie between the core attractors (which themselves surround the atomic nuclei) and characterize the shared-electron interactions. The number of bond attractors is related to the bond multiplicity. The spatial organization of localization attractors provides a basis for a well-defined classification of bonds, allowing an absolute characterization of covalency versus ionicity to be obtained from observable properties such as electron densities.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Lewis, G. N. Valence and the Structure of Atoms and Molecules (Dover, New York, 1966).

    Google Scholar 

  2. Kossel, A. Ann. Physik Chemie 49, 229–362 (1916).

    ADS  CAS  Article  Google Scholar 

  3. Langmuir, I. J. Am. chem. Soc. 41, 868–934 (1919).

    CAS  Article  Google Scholar 

  4. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1960).

    MATH  Google Scholar 

  5. Coulson, C. A. Valence (Clarendon Press, Oxford, 1952).

    Google Scholar 

  6. Thom, R. Stabilité Structurelle et Morphogénèse (Intereditions, Paris, 1972).

    MATH  Google Scholar 

  7. Palis, J. & Smale, S. Proc. 14th Symp. Pure Mathematics Global Analysis (eds Chern, S. S. & Smale, S.) 223–231 (American Mathematical Soc., Providence, 1970).

    Google Scholar 

  8. Abraham, R. & Marsden, J. E. Foundation of Mechanics 507–571 (Addison-Wesley, Redwood, 1987).

    Google Scholar 

  9. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  10. Mezey, P. in Reviews in Computational Chemistry (eds Lipkowitz, K. B. & Boyd, D. B.) Vol. 1 (VCH, New York, 1990).

    Google Scholar 

  11. Gillespie, R. J. Molecular Geometry (van Nostrand, London, 1972).

    Google Scholar 

  12. Bader, R. F. W., Gillespie, R. J. & McDougall, P. J. J. Am. chem. Soc. 110, 7329–7336 (1988).

    CAS  Article  Google Scholar 

  13. Artmann, K. Z. Naturf. 1, 426–432 (1946).

    ADS  CAS  Google Scholar 

  14. Lennard-Jones, J. Proc. R. Soc. A198, 1–13, 14–26 (1949).

    ADS  CAS  Google Scholar 

  15. Bader, R. F. W. & Stephens, M. E. J. Am. chem. Soc. 97, 7391–7399 (1975).

    CAS  Article  Google Scholar 

  16. Luken, W. L. & Culberson, J. C. Int. J. quant. Chem. 16, 265–276 (1982).

    CAS  Google Scholar 

  17. Becke, A. D. & Edgecombe, K. E. J. chem. Phys. 92, 5397–5403 (1990).

    ADS  CAS  Article  Google Scholar 

  18. Savin, A., Jepsen, J., Andersen, O. K., Preuss, H. & von Schnering, H. G. Angew. Chem. 31, 187–188 (1992).

    Article  Google Scholar 

  19. Tal, Y. & Bader, R. F. W. Int. J. quant. Chem. S12, 153–168 (1978).

    Google Scholar 

  20. Levy, M. Proc. natn. Acad. Sci. U.S.A. 76, 6062–6065 (1979).

    ADS  CAS  Article  Google Scholar 

  21. Massa, L., Goldberg, M., Frishberg, C., Boehme R. F. & La Placa, S. J. Phys. Rev. Lett. 55, 622–625 (1985).

    ADS  CAS  Article  Google Scholar 

  22. Royer, A. Phys. Rev. Lett. 55, 2745–2748 (1985).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. Daudel, R. Quantum Theory of the Chemical Bond (Reidel, Dordrecht. 1974).

    Book  Google Scholar 

  24. Dovesi, R., Saunders, V. R. & Roetti, C. CRYSTAL 92 (Theoretical Chemistry Group, Univ. Turin & SERC Daresbury Laboratory, 1992).

    Google Scholar 

  25. Pepke, E., Murray, J., Lyons, J. & Hwu, T.-Z. SciAn (Supercomputer Computations Res. Inst., Florida State Univ., Tallahassee, Florida, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silvi, B., Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994). https://doi.org/10.1038/371683a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371683a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing