Abstract
Basic fibroblast growth factor (bFGF) and human immunodeficiency virus type 1 (HIV-1) Tat protein synergize in inducing angiogenic Kaposi's sarcoma-like lesions in mice. Synergy is due to Tat, which enhances endothelial cell growth and type-IV collagenase expression in response to bFGF mimicking extracellular matrix proteins. The bFGF, extracellular Tat and Tat receptors are present in HIV-1-associated KS, which may explain the higher frequency and aggressiveness of this form compared to classical Kaposi's sarcoma where only bFGF is present.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells
BMC Biology Open Access 25 August 2021
-
Childhood HIV-associated nephropathy: 36 years later
Pediatric Nephrology Open Access 12 October 2020
-
Case report: dual primary AIDS-defining cancers in an HIV-infected patient receiving antiretroviral therapy: Burkitt’s lymphoma and Kaposi’s sarcoma
BMC Cancer Open Access 08 November 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
CDC Task Force on KS and opportunistic infections N. Engl. J. Med. 306, 248–252 (1982).
Safai, B. et al. Ann. Intern. Med. 103, 744–750 (1985).
Ruszczak, Z., Mayer-Da Silva, A. & Orfanos, C. E. Am. J. Dermatol. 9, 388–398 (1987).
Regezi, J. A. et al. Am. J. Pathol. 143, 240–249 (1993).
Ensoli, B., Barillari, G. & Gallo, R. C. Hematol. Oncol. Clin. North Am. 5, 281–295 (1991).
Folkman, J. & Klagsbrun, M. Science 235, 442–447 (1987).
Burgess, W. H. & Maciag, T. A. Rev. Biochem. 58, 575–606 (1989).
Nakamura, S. et al. Science 242, 426–430 (1988).
Salahuddin, S. Z. et al. Science 242, 430–433 (1988).
Ensoli, B. et al. Science 243, 223–226 (1989).
Ensoli, B. et al. J. clin. Invest. (in the press).
Xerri, L. et al. Am. J. Pathol. 138, 9–15 (1991).
Ensoli, B. et al. Nature 344, 84–86 (1990).
Ensoli, B. et al. J. Virol. 67, 277–287 (1993).
Barillari, G. et al. J. Immun. 149, 3727–3734 (1992).
Barillari, G., Gendelman, R., Gallo, R. C. & Ensoli, B. Proc. natn. Acad. Sci. U.S.A. 90, 7941–7945 (1993).
Albini, A., Barillari, G., Benelli, R., Gallo, R. C. & Ensoli, B. Proc. natn. Acad. Sci. U.S.A. (in the press).
Hober, D. et al. Clin. exp. Immun. 78, 329–333 (1989).
Fuchs, D. et al. J. Acquir. Immune Defic. Syndr. 5, 424–425 (1992).
Fan, J., Bass, H. Z. & Fahey, J. L. J. Immun. 151, 5031–5040 (1993).
Gay, C. G. & Winkles, J. A. Proc. natn. Acad. Sci. U.S.A. 88, 296–300 (1991).
Okamura, K. et al. J. biol. Chem. 266, 19162–19165 (1991).
Cordon-Cardo, C., Vlodavsky, I., Haimovitz-Friedman, A., Hicklin, D. & Fuks, Z. Lab. Invest. 63, 832–840 (1990).
Mahoney, S. E. et al. J. clin. Invest. 88, 174–185 (1991).
Fawell, S. et al. Proc. natn. Acad. Sci. U.S.A. 31, 664–668 (1994).
Hynes, R. O. Cell 69, 11–24 (1992).
Brooks, P. C., Clark, R. A. F. & Cheresh, D. A. Science 264, 569–571 (1994).
Buonaguro, L. et al. J. Virol. 66, 7159–7167 (1992).
Ingber, D. J. J. Cell Biochem. 47, 236–241 (1991).
Moscatelli, D. & Rifkin, D. B. Biochem. biophys. Acta 948, 67–85 (1988).
Liotta, L. A., Steeg, P. S. & Stetler-Stevenson, W. G. Cell 64, 327–336 (1991).
Mignatti, P., Tsuboi, R., Robbins, E. & Rifkin, D. J. Cell Biol. 108, 671–682 (1989).
Albini, A. et al. Int. J. Cancer 83, 775–779 (1991).
Seftor, R. E. B. et al. Proc. natn. Acad. Sci. U.S.A. 89, 1557–1561 (1992).
Seftor, R. E. B., Seftor, E., Stetler-Stevenson, W. G. & Hendrix, M. J. C. Cancer Res. 53, 3411–3415 (1993).
Werb, Z., Tkemisle, I., Behrendtsen, O., Crowley, E. & Damsky, C. H. J. Cell Biol. 109, 877–888 (1989).
Yang, J. et al. J. Immun. 152, 223–226 (1994).
Zhang, Y-M. et al. Am. J. Pathol. 144, 51–59 (1994).
Popovic, M., Sarngadharan, M. G., Read, E. & Gallo, R. C. Science 224, 497–500 (1984).
Gartner, S. et al. Science 233, 215–219 (1986).
Kubota, Y., Kleinman, H., Martin, G. R. & Lawley, T. J. J. Cell Biol. 107, 1589–1598 (1988).
Collier, I. et al. J. biol. Chem. 263, 6579–6587 (1988).
Vogel, J., Hinrich, S. H., Reynolds, R. K., Luciw, P. A. & Jay, G. Nature 335, 606–611 (1988).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ensoli, B., Gendelman, R., Markham, P. et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371, 674–680 (1994). https://doi.org/10.1038/371674a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/371674a0
This article is cited by
-
FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells
BMC Biology (2021)
-
New insights into pathogenesis point to HIV-1 Tat as a key vaccine target
Archives of Virology (2021)
-
Childhood HIV-associated nephropathy: 36 years later
Pediatric Nephrology (2021)
-
Intussusceptive angiogenesis in Covid-19: hypothesis on the significance and focus on the possible role of FGF2
Molecular Biology Reports (2020)
-
Boosting Tat DNA vaccine with Tat protein stimulates strong cellular and humoral immune responses in mice
Biotechnology Letters (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.