Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair

Abstract

HUMANS with a defect in the XPG protein suffer from xeroderma pigmentosum (XP) resulting from an inability to perform DNA nucleotide excision repair properly1–4. Here we show that XPG makes a structure-specific endonucleolytic incision in a synthetic DNA substrate containing a duplex region and single-stranded arms. One strand of the duplex is cleaved at the border with single-stranded DNA. A cut with the same polarity is also made in a bubble structure, at the 3′ side of the centrally unpaired region. Normal cell extracts introduce a nick 3′ to a platinum – DNA lesion, but an XP-G cell extract is defective in making this incision. These data show that XPG has a direct role in making one of the incisions required to excise a damaged oligonucleotide, by cleaving 3' to DNA damage during nucleotide excision repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keijzer, W. et al. Mutat. Res. 62, 183–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Arlett, C. F. et al. Carcinogenesis 1, 745–751 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Ichihashi, M., Fujiwara, Y., Uehara, Y. & Matsumoto, A. J. invest. Dermatol. 85, 284–287 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Norris, P. G., Hawk, J. L. M., Avery, J. A. & Giannelli, F. Br. J. Dermatol. 116, 861–866 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. O'Donovan, A., Scherly, D., Clarkson, S. G. & Wood, R. D. J. biol. Chem. 269, 15965–15968 (1994).

    CAS  PubMed  Google Scholar 

  6. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Nature 366, 365–368 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Tomkinson, A. E., Bardwell, A. J., Bardwell, L., Tappe, N. J. & Friedberg, E. C. Nature 362, 860–862 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sung, P., Reynolds, P., Prakash, L. & Prakash, S. J. biol. Chem. 268, 26391–26399 (1993).

    CAS  PubMed  Google Scholar 

  9. Biggerstaff, M., Szymkowski, D. E. & Wood, R. D. EMBO J. 12, 3685–3692 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Vuuren, A. J. et al. EMBO J. 12, 3693–3701 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reardon, J. T., Thompson, L. H. & Sancar, A. Cold Spring Harb. Symp. quant. Biol. 58, 605–617 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Aboussekhra, A. & Wood, R. D. Curr. Opin. Genet. Dev. 4, 212–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. O'Donovan, A. & Wood, R. D. Nature 363, 185–188 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Svoboda, D. L., Taylor, J. S., Hearst, J. E. & Sancar, A. J. biol. Chem. 268, 1931–1936 (1993).

    CAS  PubMed  Google Scholar 

  15. Lin, J. J., Phillips, A. M., Hearst, J. E. & Sancar, A. J. biol. Chem. 267, 17693–17700 (1992).

    CAS  PubMed  Google Scholar 

  16. Scherly, D. et al. Nature 363, 182–185 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Carr, A. M. et al. Nucleic Acids Res. 21, 1345–1349 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maclnnes, M. A. et al. Molec. cell. Biol. 13, 6393–6402 (1993).

    Article  Google Scholar 

  19. Shiomi, T. et al. Mutat. Res. 314, 167–175 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Harrington, J. J. & Lieber, M. R. Genes Dev. 8, 1344–1355 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Murray, J. M. et al. Molec. cell. Biol. 14, 4878–4888 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vermeulen, W., Jaeken, J., Jaspers, N. G. J., Bootsma, D. & Hoeijmakers, J. H. J. Am. J. hum. Genet. 53, 185–192 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bootsma, D. & Hoeijmakers, J. H. J. Nature 363, 114–115 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bennett, R. J., Dunderdale, H. & West, S. Cell 74, 1021–1031 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Szymkowski, D. E., Yarema, K., Essigmann, J. E., Lippard, S. J. & Wood, R. D. Proc. natn. Acad. Sci. U.S.A. 89, 10772–10776 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Shivji, M. K. K., Kenny, M. K. & Wood, R. D. Cell 69, 367–374 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Bardwell, L. et al. Science (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Donovan, A., Davies, A., Moggs, J. et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994). https://doi.org/10.1038/371432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371432a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing