Letter | Published:

p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens

Nature volume 371, pages 7274 (01 September 1994) | Download Citation

Subjects

Abstract

THE retinoblastoma tumour-suppressor gene (RB) has been implicated in negative growth regulation, induction of differentiation, and inhibition of cellular transformation1. Homozygous inactivation of the Rb gene in the mouse leads to mid-gestational lethality with defects in erythropoiesis and neurogenesis2–4. Here we describe the effects of the Rb-deficient state on the development of the ocular lens. The regional compartmentalization of growth, differentiation and apoptosis in the developing lens provides an ideal system to examine more closely the relationships of these processes in vivo. We demonstrate that loss of Rb function is associated with unchecked proliferation, impaired expression of differentiation markers, and inappropriate apoptosis in lens fibre cells. In addition, we show that ectopic apoptosis in Rb-deficient lenses is dependent on p53, because embryos doubly null for Rb and p53 show a nearly complete suppression of this effect. This developmental system provides a framework for understanding the consequences of the frequent mutation of both RB and p53 in human cancer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Curr. Opin. Genet. Dev. 3, 55–62 (1993).

  2. 2.

    et al. Nature 359, 288–294 (1992).

  3. 3.

    et al. Nature 359, 295–300 (1992).

  4. 4.

    et al. Nature 359, 328–330 (1992).

  5. 5.

    & Anat. Rec. 168, 105–126 (1970).

  6. 6.

    & J. Morphol. 140, 159–170 (1973).

  7. 7.

    , , & J. Cell Biol. 121, 899–908 (1993).

  8. 8.

    J. Embryol. exp. Morph. 44, 149–165 (1978).

  9. 9.

    , & Biochim. biophys. Acta 1097, 318–324 (1991).

  10. 10.

    , , & J. Cell Biol. 106, 705–714 (1988).

  11. 11.

    , & J. Cell Biol. 119, 493–501 (1992).

  12. 12.

    et al. Nature 352, 345–347 (1991).

  13. 13.

    et al. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

  14. 14.

    & Genes Dev. 7, 546–554 (1993).

  15. 15.

    , , & Proc. natn. Acad. Sci. U.S.A. 91, 2026–2030 (1994).

  16. 16.

    et al. Nature 362, 847–849 (1993).

  17. 17.

    et al. Nature 362, 849–852 (1993).

  18. 18.

    et al. Proc. natn. Acad. Sci. U.S.A. 90, 8910–8914 (1993).

  19. 19.

    et al. Nature Genet. 7, 480–484 (1994).

  20. 20.

    et al. Nature 334, 124–129 (1988).

  21. 21.

    & Nature 346, 760–763 (1990).

  22. 22.

    et al. EMBO J. (in the press).

  23. 23.

    et al. EMBO J. 8, 3905–3910 (1989).

  24. 24.

    , & J. Virol. 63, 965–969 (1989).

  25. 25.

    et al. J. Virol. 63, 4417–4421 (1989).

  26. 26.

    et al. Science 235, 1622–1628 (1987).

  27. 27.

    et al. J. Virol. 67, 1373–1384 (1993).

  28. 28.

    & Genes Dev. 8, 1285–1299 (1994).

Download references

Author information

Affiliations

  1. Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA

    • Sharon D. Morgenbesser
    •  & Ronald A. DePinho
  2. Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Bart O. Williams
    •  & Tyler Jacks

Authors

  1. Search for Sharon D. Morgenbesser in:

  2. Search for Bart O. Williams in:

  3. Search for Tyler Jacks in:

  4. Search for Ronald A. DePinho in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/371072a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.