Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens

Abstract

THE retinoblastoma tumour-suppressor gene (RB) has been implicated in negative growth regulation, induction of differentiation, and inhibition of cellular transformation1. Homozygous inactivation of the Rb gene in the mouse leads to mid-gestational lethality with defects in erythropoiesis and neurogenesis2–4. Here we describe the effects of the Rb-deficient state on the development of the ocular lens. The regional compartmentalization of growth, differentiation and apoptosis in the developing lens provides an ideal system to examine more closely the relationships of these processes in vivo. We demonstrate that loss of Rb function is associated with unchecked proliferation, impaired expression of differentiation markers, and inappropriate apoptosis in lens fibre cells. In addition, we show that ectopic apoptosis in Rb-deficient lenses is dependent on p53, because embryos doubly null for Rb and p53 show a nearly complete suppression of this effect. This developmental system provides a framework for understanding the consequences of the frequent mutation of both RB and p53 in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hollingsworth, R. E., Hensey, C. E. & Lee, W. H. Curr. Opin. Genet. Dev. 3, 55–62 (1993).

    Article  CAS  Google Scholar 

  2. Lee, E. Y.-H. P. et al. Nature 359, 288–294 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Jacks, T. et al. Nature 359, 295–300 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Clarke, A. R. et al. Nature 359, 328–330 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Pei, Y. F. & Rhodin, J. A. G. Anat. Rec. 168, 105–126 (1970).

    Article  CAS  Google Scholar 

  6. Silver, J. & Hughes, A. F. W. J. Morphol. 140, 159–170 (1973).

    Article  CAS  Google Scholar 

  7. Ishazaki, Y., Voyvodic, J. T., Burne, J. F. & Raff, M. C. J. Cell Biol. 121, 899–908 (1993).

    Article  Google Scholar 

  8. McAvoy, J. W. J. Embryol. exp. Morph. 44, 149–165 (1978).

    CAS  PubMed  Google Scholar 

  9. Shiels, A., Griffin, C. S. & Muggleton-Harris, A. L. Biochim. biophys. Acta 1097, 318–324 (1991).

    Article  CAS  Google Scholar 

  10. Yancey, S. B., Koh, K., Chung, J. & Revel, J. P. J. Cell Biol. 106, 705–714 (1988).

    Article  CAS  Google Scholar 

  11. Gavrieli, Y., Sherman, Y. & BenSasson, S. A. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  12. Yonish-Rouach, E. et al. Nature 352, 345–347 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Shaw, P. et al. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Debbas, M. & White, E. Genes Dev. 7, 546–554 (1993).

    Article  CAS  Google Scholar 

  15. Lowe, S. W., Jacks, T., Housman, D. E. & Ruley, H. E. Proc. natn. Acad. Sci. U.S.A. 91, 2026–2030 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Lowe, S. W. et al. Nature 362, 847–849 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Clarke, A. R. et al. Nature 362, 849–852 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Berges, R. R. et al. Proc. natn. Acad. Sci. U.S.A. 90, 8910–8914 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Williams, B. O. et al. Nature Genet. 7, 480–484 (1994).

    Article  CAS  Google Scholar 

  20. Whyte, P. et al. Nature 334, 124–129 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Pines, J. & Hunter, T. Nature 346, 760–763 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Williams, B. O. et al. EMBO J. (in the press).

  23. Hawley-Nelson, P. et al. EMBO J. 8, 3905–3910 (1989).

    Article  CAS  Google Scholar 

  24. Watanabe, S., Kanda, T. & Yoshiike, K. J. Virol. 63, 965–969 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Munger, K. et al. J. Virol. 63, 4417–4421 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahon, K. et al. Science 235, 1622–1628 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Griep, A. et al. J. Virol. 67, 1373–1384 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, H. & Griep, A. E. Genes Dev. 8, 1285–1299 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgenbesser, S., Williams, B., Jacks, T. et al. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74 (1994). https://doi.org/10.1038/371072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371072a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing