Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flat pearls from biofabrication of organized composites on inorganic substrates

Abstract

THE study of biomineralization is inspiring new approaches to the controlled fabrication of synthetic materials such as nanoparticles, polymer–mineral composites and templated crystals1–3. Although this biomimetic approach is gaining momentum, the biological mechanisms involved in biomineralization remain relatively unexplored. One major reason for this is the difficulty of analysing biomineralization processes in their native dynamic state. Here we demonstrate that a highly organized composite material—a 'flat pearl'—can be biofabricated on disks of glass, mica and MoS2 inserted between the mantle and shell of Haliotis rufescens (red abalone). We show that the construction of this material is spatially and temporally regulated and proceeds through a developmental sequence that closely resembles that at the growth front of the natural shell. Recognition of the implanted inorganic surfaces by mantle cells apparently governs a switch, perhaps genetically controlled, from aragonite to calcite biomineralization. Once a partially oriented calcite—protein primer layer has been deposited, there is a switch back to the nucleation and assembly of columnar stacks of highly ordered aragonitic nacre. Thus the presence of an inorganic surface between the mantle and shell of the organism triggers a change in the nature of the mineral phase deposited.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mann, S. Nature 365, 499–505 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Mann, S. et al. Science 261, 1286–1292 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Heuer, A. H. Science 255, 1098–1105 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Nakahara, H., Bevlander, G. & Kakei, M. Venus 41, 33–46 (1982).

    Google Scholar 

  5. Simkiss, K. & Wilbur, K. M. in Biomineralization (eds Simkiss, K. & Wilbur, K. M.) (Academic, San Diego, 1989).

    Google Scholar 

  6. Addadi, L & Weiner, S. Angew. Chem. int. Edn engl. 31, 153–161 (1992).

    Article  Google Scholar 

  7. Cariolou, M. A. & Morse, D. E. J. comp. Physiol. B157, 717–729 (1988).

    Article  CAS  Google Scholar 

  8. Manne, S. et al. Proc. R. Soc. B256, 17–23 (1994).

    Article  ADS  Google Scholar 

  9. Watabe, N. in Biology of the Integument 1 (eds Bereiter-Hahn, J., Matoltsy, A. G. & Richards, K. S.) 448–485 (Springer, New York, 1984).

    Book  Google Scholar 

  10. Wada, K. Bull. Natn. Pearl Res. Lab. 7, 703–827 (1961).

    Google Scholar 

  11. Simkiss, K. & Wada, K. Endeavour 4, 32–37 (1980).

    Article  CAS  Google Scholar 

  12. Götting, K. J. Experientia 35, 756 (1979).

    Article  Google Scholar 

  13. Wada, K. Bull. Jap. Soc. Sci. Fish. 23, 302 (1957).

    Article  Google Scholar 

  14. Watabe, N. & Wilbur, K. M. Nature 198, 334 (1960).

    Article  Google Scholar 

  15. Wada, K. Bull. Jap. Soc. Sci. Fish. 26, 549–553 (1960).

    Article  Google Scholar 

  16. Rietveld, H. M. J. appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  17. Morse, D. E., Cariolou, M. A., Stucky, G. D., Zaremba, C. M. & Hansma, P. K. Mater. Res. Soc. Symp. Proc. 292, 59–67 (1993).

    Article  CAS  Google Scholar 

  18. Meenakshi, V. R., Blackwelder, P. L. & Wilbur, K. M. J. Zool. 171, 457–484 (1973).

    Google Scholar 

  19. Meenakshi, V. R., Martin, A. W. & Wilbur, K. M. Mar. Biol. 27, 27–35 (1974).

    Article  Google Scholar 

  20. Blackwelder, P. L. & Watabe, N. Biomineralization 9, 1–10 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, M., Belcher, A., Radmacher, M. et al. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371, 49–51 (1994). https://doi.org/10.1038/371049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing