Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Layering of a liquid metal in contact with a hard wall

Abstract

When a liquid makes contact with a solid wall, theoretical studies1,2,3,4 indicate that the atoms or molecules will become layered adjacent to the wall, giving rise to an oscillatory density profile. This expectation has not, however, been directly verified, although an oscillatory force curve is seen for liquids compressed between solid surfaces5. Here we present the results of an X-ray scattering study of liquid gallium metal in contact with a (111) diamond surface. We see pronounced layering in the liquid density profile which decays exponentially with increasing distance from the wall. The layer spacing is about 3.8 å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near thewall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties5,6, and is likely to trigger heterogeneous nucleation of the solid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reflectivity of the Ga/diamond (111) interface as a function of perpendicular momentum transfer Q .
Figure 2: The top panel shows the best-fit model of the oscillatory in-plane averaged electron density profile as a function of the distance z along the interface normal.

Similar content being viewed by others

References

  1. McMullen, W. E. & Oxtoby, D. W. Adensity functional approach to freezing transitions in molecular fluids: dipolar hard spheres. J. Chem. Phys. 88, 4146–4156 (1987).

    Article  ADS  Google Scholar 

  2. Curtin, W. A. Density-functional theory of the solid–liquid interface. Phys. Rev. Lett. 59, 1228–1231 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Sikkenk, J. H., Indekeu, J. O., van Leeuwen, J. M. J. & Vossnack, E. O. Molecular-dynamics simulation of wetting and drying at solid–fluid interfaces. Phys. Rev. Lett. 59, 98–101 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Ma, W.-J., Banavar, J. R. & Koplik, J. Amolecular dynamics study of freezing in a confined liquid. J. Chem. Phys. 97, 485–493 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–609 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Derjaguin, B. V. & Churaev, N. V. Structure of the boundary layers of liquids and its influence on the mass transfer in fine pores. Progr. Surf. Mem. Sci. 14, 69–130 (1981).

    Article  Google Scholar 

  7. Toney, M. F. et al . Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Barton, S. W. et al . Distribution of atoms at the surface of liquid mercury. Nature 321, 685–687 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Magnussen, O. M. et al . X-ray reflectivity measurements of surface layering in liquid mercury. Phys. Rev. Lett. 74, 4444–4447 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Regan, M. J. et al . Surface layering in liquid gallium: an X-ray reflectivity study. Phys. Rev. Lett. 75, 2498–2502 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Pate, B. B. The diamond surface: atomic and electronic structure. Surf. Sci. 165, 83–142 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Derry, T. E., Smit, L. & van der Veen, J. F. Ion-scattering determination of the atomic arrangement at polished diamond(111) surfaces before and after reconstruction. Surf. Sci. 167, 502–518 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Norris, C. & Wotherspoon, J. T. M. The optical density of states of liquid gallium. J. Phys. F7, 1599–1606 (1977).

    Article  ADS  Google Scholar 

  14. Grübel, G., Als-Nielsen, J. & Freund, A. K. The Troika beamline at ESRF. J. Physique IV 4, C9, 27–34 (1994).

    Google Scholar 

  15. Vlieg, E. Integrated intensities using a six-circle X-ray diffractometer. J. Appl. Crystallogr. 30, 532–543 (1997)).

    Article  CAS  Google Scholar 

  16. Lagally, M. G., Savage, D. E. & Tringides, M. C. in Reflection high-energy electron diffraction and reflection imaging of surfaces 139–174 (Plenum, New York, (1988)).

    Book  Google Scholar 

  17. Defrain, A. États métastables du gallium. Surfusion et polymorphisme. J. Chim. Phys. 74, 851–862 (1977).

    Article  CAS  Google Scholar 

  18. Narten, A. H. Liquid gallium: comparison of X-ray data and neutron-diffraction data. J. Chim. Phys. 56, 1185–1189 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Gong, X. G., Chiarlotti, G., Parrinello, M. & Tosatti, E. Coexistence of monoatomic and diatomic molecular fluid character in liquid gallium. Europhys. Lett. 21, 469–475 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Trittibach, R., Grütter, Ch. & Bilgram, J. H. Surface melting of gallium single crystals. Phys. Rev. B50, 2529–2536 (1994).

    Article  ADS  Google Scholar 

  21. Züger, O. & Dürig, U. Atomic structure of the α-Ga(001) surface investigated by STM: direct evidence for the existence of Ga2molecules in solid gallium. Ultramicroscopy 42–44, 520–527 (1992).

    Article  Google Scholar 

  22. Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

    Article  ADS  CAS  Google Scholar 

  23. Van der Veen, J. F., Pluis, B. & Denier van der Gon, A. W. in Chemistry and Physics of Solid Surfaces VII 455–490 (Springer, Berlin, (1988)).

    Book  Google Scholar 

  24. Turnbull, D. in Physics of Non-crystalline Solids 41–56 (North-Holland, Amsterdam, (1964)).

    Google Scholar 

  25. Rice, S. A., Gryko, J. & Mohanty, U. in Fluid Interfacial Phenomena 255–342 (Wiley, Chichester, (1986)).

    Google Scholar 

  26. Huisman, W. J. et al . Anew X-ray diffraction method for structural investigations of solid-liquid interfaces. Rev. Sci. Instrum. 68, 4169–4176 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Huisman, W. J. et al . Evidence for tilted chains on the diamond(111)-2 × 1 surface. Surf. Sci.(in the press).

Download references

Acknowledgements

We thank C. Norris of the University of Leicester for introducing us to his technique of producing clean Ga droplets. We also acknowledge De Beers Diamond Research Laboratories of Johannesburg for the provision of the specimen and M. Rebak of the Schonland Research Center for polishing the crystal. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) and was made possible by financial support from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Friso van der Veen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisman, W., Peters, J., Zwanenburg, M. et al. Layering of a liquid metal in contact with a hard wall. Nature 390, 379–381 (1997). https://doi.org/10.1038/37069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing