Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence against dissipation-less dark matter from observations of galaxy haloes

Abstract

THERE are two different types of missing (dark) matter: the unseen matter needed to explain the high rotation velocities of atomic hydrogen in the outer parts of spiral galaxies1,2, and the much larger amount of (non-baryonic) matter needed to prevent the universe from expanding forever1 (producing either a ‘flat’ or a ‘closed’ Universe)3. Several models have been proposed to provide the dark matter required within galaxy haloes for a flat universe, of which cold dark matter (CDM) has proved the most successful at reproducing the observed large-scale structure of the Universe4–6. CDM belongs to a class of non-relativistic particles that interact primarily through gravity, and are named dissipationless because they cannot dissipate energy (baryonic particles can lose energy by emitting electromagnetic radiation). Here I show that the modelled small-scale properties of CDM7–9 are fundamentally incompatible with recent observations10–13 of dwarf galaxies, which are thought to be completely dominated by dark matter on scales larger than a kiloparsec. Thus, the hypothesis that dark matter is predominantly cold seems hard to sustain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135–187 (1979).

    Article  ADS  Google Scholar 

  2. Ashman, K. M. Publs. astr. Soc. Pacif. 104, 1109–1138 (1990).

    Article  ADS  Google Scholar 

  3. Schramm, D. N. Nucl. Phys. B. proc. suppl. 28A, 243–253 (1992).

    Article  ADS  Google Scholar 

  4. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. Astrophys. J. 292, 371–394 (1985).

    Article  ADS  CAS  Google Scholar 

  5. White, S. D. M., Frenk, C. S., Davis, M. & Efstathiou, G. Astrophys. J. 313, 505–516 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Moore, B., Frenk, C. S. & White, S. D. M. Mon. Not. R. astr. Soc. 261, 827–846 (1993).

    Article  ADS  Google Scholar 

  7. Bertschinger, E. Astrophys. J. Suppl. Ser. 58, 39–66 (1985).

    Article  ADS  Google Scholar 

  8. Dubinksi, J. & Carlberg, R. Astrophys. J. 378, 496–503 (1991).

    Article  ADS  Google Scholar 

  9. Warren, S. W., Quinn, P. J., Salmon, J. K. & Zurek, H. W. Astrophys. J. 399, 405–425 (1992).

    Article  ADS  Google Scholar 

  10. Carignan, C. & Beaulieu, S. Astrophys. J. 347, 760–770 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Lake, G., Schommer, R. A. & van Gorkom, J. H. Astr. J. 99, 547–560 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Jobin, M. & Carignan, C. Astr. J. 100, 648–662 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Broeils, A. H. thesis, Univ. Groningen (1990).

  14. Sarkar, S. Observational Tests of Cosmological Inflation (eds Shanks, T., Banday, A., Ellis, R. S., Frenk, C. S. & Wolfendale, A. W.) 91–102 (NATO Adv. Study Instit. No. 348, Kluwer Academic, Dordrecht, 1991).

    Book  Google Scholar 

  15. White, S. D. M., Davis, M. & Frenk, C. S. Mon. Not. R. astr. Soc. 209, 27P–31P (1984).

    Article  ADS  CAS  Google Scholar 

  16. Gerhard, O. E. & Spergel, D. N. Astrophys. J. 389, L9–L11 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Silk, J. & Vilenkin, A. Phys. Rev. Lett. 53, 1700–1703 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Frenk, C. S., White, S. D. M., Efstathiou, G. P. & Davis, M. Nature 317, 595–597 (1985).

    Article  ADS  Google Scholar 

  19. Quinn, P. J., Salmon, J. K. & Zurek, W. H. Nature 322, 329–335 (1986).

    Article  ADS  Google Scholar 

  20. Athanassoula, E., Bosma, A. & Papaioannou, S. Astr. Astrophys. 179, 23–40 (1987).

    ADS  CAS  Google Scholar 

  21. Kent, S. M. Astr J. 93, 816–832 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Lake, G. & Feinswog, L. Astr. J. 98, 166–179 (1989).

    Article  ADS  Google Scholar 

  23. Kuijken, K. & Gilmore, G. Astrophys. J. 367, L9–L13 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Davis, M., Summers, F. J. & Schlegel, D. Nature 359, 393–396 (1992).

    Article  ADS  Google Scholar 

  25. Efstathiou, G. P., Bond, J. R. & White, S. D. M. Mon. Not. R. astr. Soc. 258, 1P–6P (1992).

    Article  ADS  Google Scholar 

  26. Begeman, K. G. Astr. Astrophys. 223, 47–60 (1989).

    ADS  CAS  Google Scholar 

  27. Carignan, C. Astrophys. J. 299, 59–73 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Skillman, E., Bothun, G., Murray, C. & Warmels, A. Astr. Astrophys. 185, 61 (1987).

    ADS  CAS  Google Scholar 

  29. Katz, N., Hernquist, L. & Weinberg, D. H. Astrophys. J. 399, L109–L112 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Blumenthal, G., Faber, S., Flores, G. & Primack, J. Astrophys. J. 301, 27–34 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Carlberg, R. G., Lake, G. & Norman, C. A. Astrophys. J. 300, L1–L4 (1986).

    Article  ADS  Google Scholar 

  32. Flores, G. & Primack, J. Astrophys. J. (in the press).

  33. Kormendy, J. in Evolution of the Universe of Galaxies (ed. Kron, R. G.) 33 (Astr. Soc. Pacific Vol. 10, Provo, Utah, 1990).

    Google Scholar 

  34. Sanders, R. H. & Bergman, K. G. Mon. Not. R. astr. Soc. 266, 360 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994). https://doi.org/10.1038/370629a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370629a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing