Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex

Abstract

CHROMATIN structure can affect the transcriptional activity of eukaryotic structural genes by blocking access of sequence-specific activator proteins (activators) to their promoter-binding sites1. For example, the DNA-binding domain of the yeast GAL4 protein interacts very poorly with nucleosome cores compared with naked DNA2 (and see below), and binding of other activators is even more strongly inhibited2,3. The way in which activators bind to nucleosomal DNA is therefore a critical aspect of transcriptional activation. Genetic studies have suggested that the multi-component SWI/SNF complex of Saccharomyces cerevisiae facilitates transcription by altering the structure of the chromatin4,5. Here we identify and partially purify a human homologue of the yeast SWI/SNF complex (hSWI/SNF complex). We show that a partially purified hSWI/SNF complex mediates the ATP-dependent disruption of a nucleosome, thereby enabling the activators, GAL4–VP16 and GAL4–AH, to bind within a nucleosome core. We conclude that the hSWI/SNF complex acts directly to reorganize chromatin structure so as to facilitate binding of transcription factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Felsenfeld, G. Nature 355, 219–224 (1992).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Taylor, I. C. A., Workman, J. L., Schuetz, T. J. & Kingston, R. E. Genes Dev. 5, 1285–1298 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Pina, B., Bruggemeier, U. & Beato, M. Cell 60, 719–731 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Peterson, C. L. & Herskowitz, I. Cell 68, 573–583 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Genes Dev. 6, 2288–2298 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Muchardt, C. & Yaniv, M. EMBO J. 12, 4279–4290 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. Nature 366, 170–174 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Imbalzano, A. N., Kwon, H., Green, M. R. & Kingston, R. E. Nature 370, 481–485 (1994).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Laurent, B. C., Yang, X. & Carlson, M. Molec. cell. Biol. 12, 1893–1902 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Henikoff, S. Trends biochem. Sci. 18, 291–292 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Laurent, B. C., Treich, I. & Carlson, M. Genes Dev. 7, 583–591 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Shrader, T. E. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 86, 7418–7422 (1989).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Giniger, E. & Ptashne, M. Nature 330, 670–672 (1987).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. Nature 335, 563–564 (1988).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Workman, J. L. & Kingston, R. E. Science 258, 1780–1784 (1992).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Yoshinaga, S. K., Peterson, C. L., Herskowitz, I. & Yamamoto, K. R. Science 258, 1598–1604 (1992).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Laurent, B. C. & Carlson, M. Genes Dev. 6, 1707–1715 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Workman, J. L., Taylor, I. C. A. & Kingston, R. E. Cell 64, 533–544 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Imbalzano, A. N., Zaret, K. S. & Kingston, R. E. J. biol. Chem. 269, 8280–8286 (1994).

    CAS  PubMed  Google Scholar 

  20. 20

    Lin, Y. S., Carey, M. F., Ptashne, M. & Green, M. R. Cell 54, 659–664 (1988).

    CAS  Article  Google Scholar 

  21. 21

    Chasman, D. I., Leatherwood, J., Carey, M., Ptashne, M. & Kornberg, R. D. Molec. cell. Biol. 9, 4746–4749 (1989).

    CAS  Article  Google Scholar 

  22. 22

    Schwer, B. & Guthrie, C. Nature 349, 494–499 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Peck, L. J. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 80, 6206–6210 (1983).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Workman, J. L., Taylor, I. C. A., Kingston, R. E. & Roeder, R. G. Meth. Cell Biol. 35, 419–447 (1991).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwon, H., Imbalzano, A., Khavari, P. et al. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994). https://doi.org/10.1038/370477a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing