Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications for dorsoventral axis determination from the zebrafish mutation janus

Abstract

THE mechanisms underlying the formation of dorsoventral polarity in the zebrafish Danio rerio are unknown. Here we describe the zebrafish recessive maternal-effect mutation janusm55. The mutant phenotype is a division of the blastoderm along the first cleavage plane into two detached half-sized blastoderms. Partial-axis bifurcation occurs in a subset of mutants. Analysis of goosecoid expression in the mutant embryos indicates that only one organizer region is present in each embryo. Furthermore, the position of this organizer region is random with respect to the first cleavage plane bisecting the two blastoderms. Finally, cell tracing in wild-type embryos demonstrates that there is no strict correlation of the dorsoventral axis with early cleavage planes in zebrafish. These findings support the notion that the establishment of the dorsoventral axis and the first cleavage planes are determined by separate mechanisms in the zebrafish embryo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Strehlow, D. & Gilbert, w. Nature 361, 451–453 (1993).

    Article  ADS  Google Scholar 

  2. Westerfield, M. The Zebrafish Book (Univ. Oregon Press, USA, 1993).

    Google Scholar 

  3. Laale, H. W. Can. J. Zool. 62, 386–390 (1984).

    Article  Google Scholar 

  4. Carter, C. A. & Wourms, J. P. J. Morph. 215, 301–312 (1993).

    Article  CAS  Google Scholar 

  5. Stachel, S. E., Grunwald, D. J. & Myers, P. Z. Development 117, 1261–1274 (1993).

    CAS  Google Scholar 

  6. Blumberg, B., Wright, C. V. E., DeRobertis, E. M. & Cho, K. W. Y. Science 253, 194–196 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Cho, K. W. Y., Blumberg, B., Steinbeisser, H. & DeRobertis, E. M. Cell 67, 1111–1120 (1991).

    Article  CAS  Google Scholar 

  8. Kimmel, C. B. & Warga, R. M. Devl Biol. 124, 269–280 (1987).

    Article  CAS  Google Scholar 

  9. Oppenheimer, J. M. J. exp. Zool. 73, 405–444 (1936).

    Article  Google Scholar 

  10. Kimmel, C. B. & Law, R. D. Devl Biol. 108, 78–85 (1985).

    Article  CAS  Google Scholar 

  11. Gevers, P., Dulos, J., van den Boogaart, J. G. M. & Timmermans, L. P. M. Roux's Arch. dev. Biol. 201, 275–283 (1992).

    Article  Google Scholar 

  12. Gerhart, J., Ubbels, G., Black, S., Hara, K. & Kirschner, M. Nature 292, 511–516 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Gerhart, J. et al. Development suppl. 107, 37–51 (1989).

    Google Scholar 

  14. Danilchik, M. V. & Black, S. D. Devi Biol. 128, 58–64 (1988).

    Article  CAS  Google Scholar 

  15. Black, S. D. & Vincent, J. P. Devl Biol. 128, 65–71 (1988).

    Article  CAS  Google Scholar 

  16. Carrol, C. R. & Van Deusen, E. B. Devl Biol. 32, 155–166 (1973).

    Article  Google Scholar 

  17. Malacinski, G. M. & Brothers, A. J. Science 184, 1142–1147 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Droin, A. & Fischberg, M. Roux's Arch. dev. Biol. 193, 86–89 (1984).

    Article  Google Scholar 

  19. Ikenishi, K. & Tsuzaki, Y. Devl Biol. 125, 458–461 (1988).

    Article  CAS  Google Scholar 

  20. Kubota, H. Y., Itoh, K. & Asada-Kubota, M. Devl Biol. 144, 145–151 (1991).

    Article  CAS  Google Scholar 

  21. Schirone, R. C. & Gross, L. J. exp. Embryol. 169, 43–52 (1968).

    Google Scholar 

  22. Oxtoby, E. & Trevarow, J. Nucleic Acids Res. 21, 1087–1095 (1993).

    Article  CAS  Google Scholar 

  23. Kimmel, C. B., Warga, R. M. & Schilling, T. F. Development 108, 581–594 (1990).

    CAS  Google Scholar 

  24. Helde, K. A., Wilson, E. T., Cretekos, C. J. & Grunwald, D. J. Science 265, 517–520 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelilah, S., Solnica-Krezel, L., Stainier, D. et al. Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370, 468–471 (1994). https://doi.org/10.1038/370468a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370468a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing