Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interstellar oxide grains from the Tieschitz ordinary chondrite

Abstract

MOST material in the Solar System has an isotopic composition that represents an average of the different stars that contributed material to the protostellar cloud. Primitive meteorites, on the other hand, preserve grains that retain the isotopic signatures of their individual stellar sources1 and thus provide valuable insight into stellar and galactic evolution, nucleosynthesis, and solar nebular processes. A large number of pre-solar silicon carbide, graphite and diamond grains have now been isolated1,2, but only three interstellar oxide grains have hitherto been recovered3–7, even though oxygen-rich stars are believed to be the dominant source of dust in the Galaxy8,9. We report here the isolation of 21 interstellar oxide grains from the Tieschitz meteorite. The grains exhibit a wide range of oxygen isotope compositions, indicating that they originated in several distinct stellar sources having different masses and initial compositions. There is also evidence for the presence of the short-lived radionuclide 26A1 in nine of the grains at the time they formed. Although the isotopic compositions of many of the grains are consistent with both observations and theoretical models of oxygen-rich red giant stars, a significant fraction have no observed stellar counterpart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anders, E. & Zinner, E. K. Meteoritics 28, 490–514 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Ott, U. Nature 364, 25–33 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Huss, G. R., Hutcheon, I. D., Wasserburg, G. J. & Stone, J. Lunar planet. Sci. XXIII, 563–564 (1992).

    Google Scholar 

  4. Nittler, L. R., Walker, R. M., Zinner, E. K., Hoppe, P. & Lewis, R. S. Lunar planet. Sci. XXIV, 1087–1088 (1993).

    ADS  Google Scholar 

  5. Huss, G. R., Hutcheon, I. D., Fahey, A. J. & Wasserburg, G. J. Meteoritics 28, 369–370 (1993).

    ADS  Google Scholar 

  6. Hutcheon, I. D., Huss, G. R., Fahey, A. J. & Wasserburg, G. J. Astrophys. J. 425, L97–L100 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Huss, G. R., Fahey, A. J., Gallino, R. & Wasserburg, G. J. Astrophys. J. (in the press).

  8. Gehrz, R. D. in Interstellar Dust (eds Allamandola, L. J. & Tielens, A. G. G.) 445–453 (Kluwer Academic, Dordrecht, 1989).

    Book  Google Scholar 

  9. Whittet, D. C. B. Dust in the Galactic Environment, 295 (Institute of Physics, Bristol, 1992).

    Book  Google Scholar 

  10. Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R. M. & Zinner, E. K. Lunar planet. Sci. XXV, 1005–1006 (1994).

    ADS  Google Scholar 

  11. Gao, X., Alexander, C. M. O'D., Swan, P. D. & Walker, R. M. Lunar planet. Sci. XXV, 401–402 (1994).

    ADS  Google Scholar 

  12. Zinner, E. K., Tang, M. & Anders, E. Geochim. cosmochim. Acta 53, 3273–3290 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Harris, M. J. & Lambert, D. L. Astrophys. J. 285, 674–682 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Smith, V. V. & Lambert, D. L. Astrophys. J. Suppl. Ser. 72, 387–416 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Iben, I. Jr. Astrophys. J. Suppl. Ser. 76, 55–114 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Dearborn, D. S. P. Phys. Rep. 210, 367–382 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Boothroyd, A. I., Sackmann, I. J. & Wasserburg, G. J. Astrophys. J. (in the press).

  18. El Eid, M. F. Astr. Astrophys. 285, 915–928 (1994).

    ADS  CAS  Google Scholar 

  19. Edvardsson, B. et al. Astr. Astrophys. 275, 101–152 (1993).

    ADS  CAS  Google Scholar 

  20. Harris, M. J., Lambert, D. L., Hinkle, K. H., Gustafsson, B. & Eriksson, K. Astrophys. J. 316, 294–304 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Kahane, C., Cernicharo, J., Gomez-Gonzalez, J. & Guelin, M. Astr. Astrophys. 256, 235–250 (1992).

    ADS  CAS  Google Scholar 

  22. Forestini, M., Paulus, G. & Arnould, M. Astr. Astrophys. 252, 597–604 (1991).

    ADS  CAS  Google Scholar 

  23. Gallino, R., Raiteri, C. M., Busso, M. & Matteucci, F. Astrophys. J. (in the press).

  24. Nørgaard, H. Astrophys. J. 236, 895–898 (1980).

    Article  ADS  Google Scholar 

  25. Cameron, A. G. W. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 47–73 (Univ. Arizona Press, 1993).

    Google Scholar 

  26. Prantzos, N., Doom, C., Arnould, M. & de Loore, C. Astrophys. J. 304, 695–712 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Woosley, S. E. in Nucleosynthesis and Chemical Evolution (eds Hauck, B., Maeder, A. & Meynet, G.) 1–195 (Observatoire de Genève, Geneva, 1986).

    Google Scholar 

  28. Clayton, R. N., Grossman, L. & Mayeda, T. K. Science 182, 485–488 (1973).

    Article  ADS  CAS  Google Scholar 

  29. Virag, A., Zinner, E. K., Amari, S. & Anders, E. Geochim. Cosmochim. Acta 55, 2045–2062 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Thiemens, M. H. & Heidenreich, J. E. Science 219, 1073–1075 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Renzini, A. & Voli, M. Astr. Astrophys. 94, 175–193 (1981).

    ADS  CAS  Google Scholar 

  32. Lattimer, J. M., Schramm, D. N. & Grossman, L. Astrophys. J. 219, 230–249 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nittler, L., O'D Alexander, C., Gao, X. et al. Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370, 443–446 (1994). https://doi.org/10.1038/370443a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370443a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing