Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid evolution of a protein in vitro by DNA shuffling


DNA SHUFFLING is a method for in vitro homologous recombination of pools of selected mutant genes by random fragmentation and polymerase chain reaction (PCR) reassembly1. Computer simulations called genetic algorithms2–4have demonstrated the importance of iterative homologous recombination for sequence evolution. Oligonucleotide cassette mutagenesis5–11 and error-prone PCR12,13 are not combinatorial and thus are limited in searching sequence space1,14. We have tested mutagenic DNA shuffling for molecular evolution14–18 in a p-lactamase model system9,19. Three cycles of shuffling and two cycles of backcrossing with wild-type DNA, to eliminate non-essential mutations, were each followed by selection on increasing concentrations of the antibiotic cefotaxime. We report here that selected mutants had a minimum inhibitory concentration of 640 μg ml-1, a 32,000-fold increase and 64-fold greater than any published TEM-1 derived enzyme. Cassette mutagenesis and error-prone PCR resulted in only a 16-fold increase9.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Stemmer, W. P. C. Proc. natn. Acad. Sci. U.S.A. (in the press).

  2. Holland, J. H. Scient. Am. 267, 66–72 (1992).

    Article  Google Scholar 

  3. Holland, J. H. Adaptation in Natural and Artificial Systems 2nd edn (MIT Press, Cambridge, 1992).

    Google Scholar 

  4. Arkin, A. & Youvan, D. C. Proc. natn. Acad. Sci. U.S.A. 89, 7811–7815 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Delagrave, S. & Youvan, D. C. Biotechnology 11, 1548–1552 (1993).

    CAS  PubMed  Google Scholar 

  6. Palzkill, T. & Botstein, D. J. Bact. 174, 5237–5243 (1992).

    Article  CAS  Google Scholar 

  7. Oliphant, A. R., Nussbaum, A. L. & Struhl, K. Gene 44, 177–183 (1986).

    Article  CAS  Google Scholar 

  8. Hermes, J. D., Blacklow, S. C. & Knowles, J. R. Proc. natn. Acad. Sci. U.S.A. 87, 696–700 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Leung, D. W., Chen, E. & Goeddel, D. V. Technique 1, 11–15 (1989).

    Google Scholar 

  10. Caldwell, R. C. & Joyce, G. F. PCR Meth. Applic. 2, 28–33 (1992).

    Article  Google Scholar 

  11. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  12. Kauffman, S. A. J. theor. Biol. 157, 1–7 (1992).

    Article  CAS  Google Scholar 

  13. Bartel, D. P. & Szostak, J. W. Science 261, 1411–1418 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Tuerk, C. & Gold, L. Science 249, 505–510 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Joyce, G. F. Scient. Am. 267, 90–97 (1992).

    Article  CAS  Google Scholar 

  16. Jacoby, G. A. & Medeiros, A. A. Antimicrob. Ag. Chemother. 35, 1697–1704 (1991).

    Article  CAS  Google Scholar 

  17. Collatz, E., Labia, R. & Gutmann, L. Molec. Microbiol. 4, 1615–1620 (1990).

    Article  CAS  Google Scholar 

  18. Philippon, A., Labia, R. & Jacoby, G. Antimicrob. Ag. Chemother. 33, 1131–1136 (1989).

    Article  CAS  Google Scholar 

  19. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Nature 348, 552–554 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Huse, W. D., Sastry, L., Iverson, S. A. & Kang, A. S. Science 246, 1275–1278 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Watson, N. Gene 70, 399–403 (1988).

    Article  CAS  Google Scholar 

  22. Ambler, R. P. et al. Biochem. J. 276, 269–272 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stemmer, W. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing