Abstract
ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4–6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8–10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19–24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Dual-function perovskite light-emitting/sensing devices for optical interactive display
Light: Science & Applications Open Access 22 November 2022
-
Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy
Nature Communications Open Access 19 August 2022
-
Optoelectronic system and device integration for quantum-dot light-emitting diode white lighting with computational design framework
Nature Communications Open Access 03 August 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Bsiesy, A. et al. Phys. Rev. Lett. 71, 637–640 (1993).
Burroughes, J. H. et al. Nature 347, 539–541 (1990).
Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Holmes, A. B. & Friend, R. H. Nature 365, 628–630 (1993).
Steigerwald, M. L. et al. J. Am. chem. Soc. 110, 3046–3050 (1988).
Murray, C. B., Norris, D. B. & Bawendi, M. G. J. Am. chem. Soc. 115, 8706 (1993).
Bowen Katari, J. E., Colvin, V. L. & Alivisatos, A. P. J. phys. Chem. 98, 4109 (1994).
Bradley, D. D. C. Synthetic Metals 54, 401–415 (1993).
Burn, P. L. et al. Nature 356, 47–49 (1992).
Karg, S., Riess, W., Dyakonov, V. & Schwoerer, M. Synthetic Metals 54, 427–433 (1993).
Zhang, C., Braun, D. & Heeger, A. J. J. appl. Phys. 73, 5177–5180 (1993).
Parker, I. D. J. appl. Phys. 75, 1656 (1994).
Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).
Brown, A. R. et al. Chem. Phys. Lett. 200, 46–54 (1992).
Brown, A. R. et al. Appl. Phys. Lett. 61, 2793–2795 (1992).
Valeeva, I. L. & Lachinov, A. N. Synthetic Metals 55–57, 4151–4156 (1993).
Karg, S. Synthetic Metals 57, 4186–4191 (1993).
Quist, T. M. et al. Appl. Phys. Lett. 1, 91–93 (1961).
Canham, L. Nature 365, 695 (1994).
Rossetti, R., Hull, R., Gibson, J. M. & Brus, L. E. J. chem. Phys. 82, 552–559 (1985).
Bawendi, M. G., Carroll, P. J., Wilson, W. L. & Brus, L. E. J. chem. Phys. 96, 946–954 (1992).
Brus, L. J. phys. Chem. 90, 2555–2560 (1986).
Ekimov, A. I. et al. J. opt. Soc. B1O, 100–107 (1992).
Dannhauser, T., O'Neil, M., Johannson, K., Whitten, D. & McLendon, G. J. phys. Chem. 90, 6074–6076 (1986).
Hasselbarth, A., Eychmuller, A. & Weller, H. Chem. Phys. Lett. 203, 271–276 (1993).
Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).
Colvin, V. L., Alivisatos, A. P. & Tobin, J. G. Phys. Rev. Lett. 66, 2786–2789 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Colvin, V., Schlamp, M. & Alivisatos, A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994). https://doi.org/10.1038/370354a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/370354a0
This article is cited by
-
Preparation and characterization of SbAs nanorods for opto-electronics applications
Bulletin of Materials Science (2023)
-
Interface polarization in heterovalent core–shell nanocrystals
Nature Materials (2022)
-
Dual-function perovskite light-emitting/sensing devices for optical interactive display
Light: Science & Applications (2022)
-
Optoelectronic system and device integration for quantum-dot light-emitting diode white lighting with computational design framework
Nature Communications (2022)
-
On the accurate characterization of quantum-dot light-emitting diodes for display applications
npj Flexible Electronics (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.