Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer


ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4–6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8–10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19–24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Bsiesy, A. et al. Phys. Rev. Lett. 71, 637–640 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Holmes, A. B. & Friend, R. H. Nature 365, 628–630 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Steigerwald, M. L. et al. J. Am. chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  5. Murray, C. B., Norris, D. B. & Bawendi, M. G. J. Am. chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  6. Bowen Katari, J. E., Colvin, V. L. & Alivisatos, A. P. J. phys. Chem. 98, 4109 (1994).

    Article  Google Scholar 

  7. Bradley, D. D. C. Synthetic Metals 54, 401–415 (1993).

    Article  CAS  Google Scholar 

  8. Burn, P. L. et al. Nature 356, 47–49 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Karg, S., Riess, W., Dyakonov, V. & Schwoerer, M. Synthetic Metals 54, 427–433 (1993).

    Article  CAS  Google Scholar 

  10. Zhang, C., Braun, D. & Heeger, A. J. J. appl. Phys. 73, 5177–5180 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Parker, I. D. J. appl. Phys. 75, 1656 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).

    Article  CAS  Google Scholar 

  13. Brown, A. R. et al. Chem. Phys. Lett. 200, 46–54 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Brown, A. R. et al. Appl. Phys. Lett. 61, 2793–2795 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Valeeva, I. L. & Lachinov, A. N. Synthetic Metals 55–57, 4151–4156 (1993).

    Article  Google Scholar 

  16. Karg, S. Synthetic Metals 57, 4186–4191 (1993).

    Article  CAS  Google Scholar 

  17. Quist, T. M. et al. Appl. Phys. Lett. 1, 91–93 (1961).

    Article  ADS  Google Scholar 

  18. Canham, L. Nature 365, 695 (1994).

    Article  ADS  Google Scholar 

  19. Rossetti, R., Hull, R., Gibson, J. M. & Brus, L. E. J. chem. Phys. 82, 552–559 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Bawendi, M. G., Carroll, P. J., Wilson, W. L. & Brus, L. E. J. chem. Phys. 96, 946–954 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Brus, L. J. phys. Chem. 90, 2555–2560 (1986).

    Article  CAS  Google Scholar 

  22. Ekimov, A. I. et al. J. opt. Soc. B1O, 100–107 (1992).

    Google Scholar 

  23. Dannhauser, T., O'Neil, M., Johannson, K., Whitten, D. & McLendon, G. J. phys. Chem. 90, 6074–6076 (1986).

    Article  CAS  Google Scholar 

  24. Hasselbarth, A., Eychmuller, A. & Weller, H. Chem. Phys. Lett. 203, 271–276 (1993).

    Article  ADS  Google Scholar 

  25. Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  26. Colvin, V. L., Alivisatos, A. P. & Tobin, J. G. Phys. Rev. Lett. 66, 2786–2789 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colvin, V., Schlamp, M. & Alivisatos, A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing