Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems

Abstract

IN the 35 years since A. C. Redfield's classic paper1, the use of elemental ratios has become widespread in marine and freshwater phytoplankton studies2,3. But nutrient ratios have only recently been studied elsewhere in pelagic ecosystems, such as the producer-consumer interface4,5. Here we report the results of the first study, to our knowledge, of N:P ratios in pelagic producers and consumers (phytoplankton and zooplankton) in lacustrine and marine habitats. The N:P ratio of phytoplankton was higher in lakes than in marine sites; however, N:P ratios were higher in marine zooplankton than in freshwater zooplankton. The elemental imbalance of the phytoplankton–zooplankton interaction (N:Pfood–N:Pconsumers) in lakes was positive and exceeded the negative imbal-ance in marine sites; thus P-deficient food may limit zooplankton growth in lakes but not in oceans. Stoichiometric calculations6 indicated that consumer-driven nutrient recycling ratios in lakes may be 4–6 times higher than in marine systems. Consistent with this difference, phytoplankton P-limitation was more prevalent in lakes than in marine sites. Thus, the ecological stoichiometry of the zooplankton–phytoplankton interaction differs qualitatively in freshwater and marine ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Redfield, A. C. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  2. Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Nature 279, 210–215 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Hecky, R. E., Campell, P. & Hendzel, L. L. Limnol. Oceanogr. 38, 709–724 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Carpenter, S. R., Cottingham, K. L. & Schindler, D. E. Trends Ecol. Evol. 7, 332–336 (1992).

    Article  CAS  Google Scholar 

  5. Sterner, R. W., Elser, J. J. & Hessen, D. O. Biogeochemistry 17, 49–67 (1992).

    Article  CAS  Google Scholar 

  6. Sterner, R. W. Am. Nat. 136, 209–229 (1990).

    Article  Google Scholar 

  7. Healey, F. P. & Hendzel, L. L. Can. J. Fish. aquat. Sci. 37, 442–543 (1980).

    Article  CAS  Google Scholar 

  8. Andersen, T. & Hessen, D. O. Limnol. Oceanogr. 36, 807–814 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Butler, E. I., Corner, E. D. S. & Marshall, S. M. J. mar. biol. Ass. U. K. 49, 977–1001 (1969).

    Article  CAS  Google Scholar 

  10. Urabe, J. & Watanabe, Y. Limnol. Oceanogr. 37, 244–251 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Olsen, Y. et al. Limnol. Oceanogr. 31, 34–44 (1986).

    Article  ADS  Google Scholar 

  12. Sterner, R. W. Ecology 74, 2351–2360 (1993).

    Article  Google Scholar 

  13. Brett, M. T. Limnol. Oceanogr. 38, 1333–1337 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Urabe, J. & Watanabe, Y. Limnol. Oceanogr. 38, 1337–1340 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Hessen, D. O. Limnol. Oceanogr. 38, 1340–1343 (1993).

    Article  ADS  Google Scholar 

  16. Elser, J. J., Elser, M. M., MacKay, N. A. & Carpenter, S. R. Limnol. Oceanogr. 33, 1–14 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Reiners, W. A. Am. Nat. 127, 59–73 (1986).

    Article  Google Scholar 

  18. McNaughton, S. J. Nature 345, 613–615 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Tezuka, Y. Microbiol. Ecol. 19, 227–238 (1990).

    Article  CAS  Google Scholar 

  20. Standard Methods for the Examination of Water and Wastewater (Washington DC, 1992).

  21. Strickland, J. D. & Parsons, T. R. Bull. Fish. Res. Bd. Can. 167, 1–310 (1972).

    Google Scholar 

  22. Banse, K. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 409–441 (Plenum, New York, 1992).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elser, J., Hassett, R. A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems. Nature 370, 211–213 (1994). https://doi.org/10.1038/370211a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370211a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing