Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parthenogenetic activation of oocytes in c-mos-deficient mice

An Erratum to this article was published on 04 August 1994

Abstract

IN Xenopus the c-mos proto-oncogene product (Mos) is essential for the initiation of oocyte maturation1, for the progression from meiosis I to meiosis II2,3 and for the second meiotic metaphase arrest, acting as an essential component of the cytostatic factor CSF4,5. Its function in mouse oocytes is unclear6–9, however, as is the biological significance of c-mos mRNA expression in testes1,10 and several somatic tissues1,10,11. We have generated c-mos-deficient mice by gene targeting in embryonic stem cells. These mice grew at the same rate as their wild-type counterparts and reproduction was normal in the males, but the fertility of the females was very low. The c-mos-deficient female mice developed ovarian teratomas at a high frequency. Oocytes from these females matured to the second meiotic metaphase both in vivo and in vitro, but were activated without fertilization. The results indicate that in mice Mos plays a role in the second meiotic metaphase arrest, but does not seem to be essential for the initiation of oocyte maturation, spermatogenesis or somatic cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & Vande Woude, G. F. Nature 335, 519–525 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Kanki, J. P. & Donoghue, D. J. Proc. natn. Acad. Sci. U.S.A. 88, 5794–5798 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Daar, I., Paules, R. S. & Vande Woude, G. F. J. Cell Biol. 114, 329–335 (1991).

    Article  CAS  Google Scholar 

  4. Masui, Y. & Markert, C. L. J. exp. Zool. 177, 129–146 (1971).

    Article  CAS  Google Scholar 

  5. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. Nature 342, 512–518 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Zhao, X., Batten, B., Singh, B. & Arlinghaus, R. B. Oncogene 5, 1727–1730 (1990).

    CAS  PubMed  Google Scholar 

  7. Zhao, X., Singh, B. & Batten, B. E. Oncogene 6, 43–49 (1991).

    CAS  PubMed  Google Scholar 

  8. Paules, R. S., Buccione, R., Moschel, R. C., Vande Woude, G. F. & Eppig, J. J. Proc. natn. Acad. Sci. U.S.A. 86, 5395–5399 (1989).

    Article  ADS  CAS  Google Scholar 

  9. O'Keefe, S. J., Wolfes, H., Kiessling, A. A. & Cooper, G. M. Proc. natn. Acad. Sci. U.S.A. 86, 7038–7042 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Propst, F. & Vande Woude, G. F. Nature 315, 516–518 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Propst, F., Rosenberg, M. P., Iyer, A., Kaul, K. & Vande Woude G. F. Molec. cell. Biol. 7, 1629–1637 (1987).

    Article  CAS  Google Scholar 

  12. Yagi, T. et al. Analyt. Biochem. 214, 77–86 (1993).

    Article  CAS  Google Scholar 

  13. Yagi, T. et al. Analyt. Biochem. 214, 70–76 (1993).

    Article  CAS  Google Scholar 

  14. Herzog, N. K., Ramagli, L. S. & Arlinghaus, R. B. Oncogene 4, 1307–1315 (1989).

    CAS  PubMed  Google Scholar 

  15. Hashimoto, N. & Kishimoto, T. Devl Biol. 126, 242–252 (1988).

    Article  CAS  Google Scholar 

  16. Wolf, D. P. Devl Biol. 64, 1–10 (1978).

    Article  CAS  Google Scholar 

  17. Inoue, M. & Wolf, D. P. Biol. Reprod. 13, 546–551 (1975).

    Article  CAS  Google Scholar 

  18. Eppig, J. J., Kozak, L. P., Eicher, E. M. & Stevens, L. C. Nature 269, 517–518 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Furuno, N. et al. EMBO J. 13, 2399–2410 (1994).

    Article  CAS  Google Scholar 

  20. Hanks, S. K., Quinn, A. M. & Hunter, T. Science 241, 42–52 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Hashimoto, N., Iwashita, S., Shoji-Kasai, Y., Kishimoto, T. & Imahori, K. Dev. Growth Differ. 32, 197–203 (1990).

    Article  CAS  Google Scholar 

  22. Hogan, B., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo 106 (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  23. Toyoda, Y., Yokoyama, M. & Hoshi, T. Jpn. J. Anim. Reprod. 16, 147–151 (1971).

    Article  Google Scholar 

  24. Gratzner, H. G. Science 218, 474–475 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, N., Watanabe, N., Furuta, Y. et al. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370, 68–71 (1994). https://doi.org/10.1038/370068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing