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Pathobiology of transforming growth factor b in cancer,
fibrosis and immunologic disease, and therapeutic
considerations
Gérald J Prud’homme

Transforming growth factor b (TGF-b) is a highly pleiotropic cytokine that plays an important role in wound healing,
angiogenesis, immunoregulation and cancer. The cells of the immune system produce the TGF-b1 isoform, which exerts
powerful anti-inflammatory functions, and is a master regulator of the immune response. However, this is context
dependent, because TGF-b can contribute to the differentiation of both regulatory (suppressive) T cells (Tr cells) and
inflammatory Th17 cells. While TGF-bmight be underproduced in some autoimmune diseases, it is overproduced in many
pathological conditions. This includes pulmonary fibrosis, glomerulosclerosis, renal interstitial fibrosis, cirrhosis, Crohn’s
disease, cardiomyopathy, scleroderma and chronic graft-vs-host disease. In neoplastic disease, TGF-b suppresses the
progression of early lesions, but later this effect is lost and cancer cells produce TGF-b, which then promotes metastasis.
This cytokine also contributes to the formation of the tumor stroma, angiogenesis and immunosuppression. In view of
this, several approaches are being studied to inhibit TGF-b activity, including neutralizing antibodies, soluble receptors,
receptor kinase antagonist drugs, antisense reagents and a number of less specific drugs such as angiotensin II an-
tagonists and tranilast. It might be assumed that TGF-b blockade would result in severe inflammatory disease, but this has
not been the case, presumably because the neutralization is only partial. In contrast, the systemic administration of TGF-b
for therapeutic purposes is limited by toxicity and safety concerns, but local administration appears feasible, especially to
promote wound healing. Immunotherapy or vaccination stimulating TGF-b production and/or Tr differentiation might be
applied to the treatment of autoimmune diseases. The benefits of new therapies targeting TGF-b are under intense
investigation.
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Transforming growth factor b (TGF-b) is a highly pleiotropic
cytokine, that in mammals exists in three isoforms (TGF-b1,
TGF-b2 and TGF-b3).1–3 The importance of TGF-b stems
from the fact that it contributes importantly to apoptosis
control, angiogenesis, wound healing, immune regulation
and tumor biology. The TGF-bs are part of a large super-
family of proteins,1 but in this review the author will focus
only on the three TGF-b isoforms. Practically all cells have
receptors for the TGF-bs, and at least one of the isoforms is
produced in all tissues.1–3 The cells of the immune system
produce primarily TGF-b1. TGF-b is also normally found in
the plasma (TGF-b1 isoform),1 and bound to extracellular
matrix proteins throughout the body.4 Notably, platelets and
bones contain large amounts of TGF-b1.1–5 Unlike other

cytokines, it is secreted in a latent form that can be activated
by various mechanisms to exert its effects. Latency is
probably essential, in view of the ubiquitous expression of
receptors.

The immunological functions of TGF-b have attracted a
considerable amount of attention (Figure 1). Indeed, it exerts
broad anti-inflammatory and immunosuppressive effects,3,6

and complete knockout (KO) of TGF-b1 in mice results in
autoimmunity and early death from a multi-organ in-
flammatory syndrome.7,8 Recent studies3,6,9 have shown that
it is an important differentiation factor (along with IL-2) for
some regulatory T cells (denoted Tr or Treg cells) that exert
powerful and diverse immunosuppressive effects. However,
not all the effects of TGF-b are suppressive because, for
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example, in combination with IL-6 it induces the differ-
entiation of Th17 cells,10 that have been linked to in-
flammation and autoimmunity. This capacity of TGF-b to
induce either immunosuppressive or inflammatory events is
context dependent, and must be considered when analyzing
its role in disease.9

Furthermore, TGF-b plays a major role in cancer (as
outlined below), by suppressing tumor growth in the early
phase of neoplasia, while promoting tumor progression and
metastasis in later phases. Thus, many malignant tumors
produce large amounts of TGF-b, but are resistant to its
growth inhibitory effects. At the same time, TGF-b produced
by tumors depresses anti-tumor immune responses at the
level of T-helper (Th) cells, cytotoxic T lymphocytes (CTLs),
dendritic cells (DCs), macrophages, natural killer (NK) cell
and B cells, while increasing the numbers of Tr cells. These
combined immunosuppressive effects diminish the effec-
tiveness of cancer vaccines, and represent a major obstacle to
immunotherapy.

In addition to cancer, the production of TGF-b is altered
in many pathologic conditions. This can be related to over-
production as in pulmonary fibrosis, cirrhosis, glomerulo-
sclerosis, cardiomyopathy, Crohn’s disease, scleroderma and
chronic graft-vs-host disease (GVHD), or underproduction

as in some autoimmune diseases. From this list, it is apparent
that targeting TGF-b for therapy is of major clinical interest,
and the author will review the many applications and ap-
proaches that have been investigated.

TGF-b ACTIVATION AND SIGNALING
The biology of TGF-b is exceedingly complex, and only
salient points will be mentioned. It is produced in a latent
form consisting of TGF-b and the non-covalently bound la-
tency-associated peptide (LAP; derived from the N-terminal
of the TGF-b precursor), that must be released for activa-
tion.1,2,4 In vitro, activation is easily accomplished by acid-
ification, but in vivo the mechanisms are less clear and several
possible modes of activation exist.4 It is thought that pro-
teolysis by plasmin (a key component of the fibrinolytic
system) and other proteases is an important mechanism. At
least in some cases, plasmin-mediated activation occurs on
the cell membrane. For instance, the mannose-6-phosphate/
insulin-like growth factor II receptor (M6P/IGFII-R) can
bind LAP-TGF-b on the surface of monocytes and can
complex with the urokinase receptor and plasminogen to
generate plasmin and activate latent TGF-b.11 However, other
molecules such as thrombospondin 1 (TSP-1), found in
platelets and the extracellular matrix, and avb6 integrin, an

Figure 1 Pleiotropic effects of TGF-b. This cytokine (primarily the TGF-b1 isoform) exerts multiple effects on inflammation, angiogenesis, fibrosis and tumor

progression. It stimulates production of VEGF and CTGF, which contributes to angiogenesis and fibrosis, respectively. AngII stimulates production of TGF-b
and CTGF, and also promotes fibrosis. It also directly activates the Smad signaling pathway. In the early phase of tissue injury, TGF-b exerts a strong

chemotactic effect on leukocytes, but later it exerts primarily immunosuppressive effects on all arms of the immune system (Th cells, CTLs, NK cells, Mac and

DCs). TGF-b exerts a general inhibitory effect on B-cell proliferation, differentiation and antibody production, with the exception of IgA. Under optimal

stimulatory conditions (where the inhibitory effects of TGF-b are weak or absent), it promotes IgA class switching and IgA production, and contributes to

mucosal immunity. In the context of T-cell activation, it promotes Foxp3 expression and regulatory T-cell differentiation (this is enhanced by IL-2). However,

if the environment is rich in IL-6, differentiation to an inflammatory Th17 phenotype occurs instead. It can either promote or inhibit apoptosis, also in a

context-dependent manner. TGF-b suppresses tumor growth in the early phase of neoplasia, but promotes tumor progression (especially metastasis) at later

stages. AngII, angiotensin II; CTGF, connective tissue growth factor; CTL, cytotoxic T lymphocyte; DC, dendritic cell, Mac, macrophage; NK, natural killer cell;

Th, T-helper cell; Treg, regulatory T cells; VEGF, vascular endothelial growth factor.
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epithelial-cell membrane protein, can also bind LAP-TGF-b
and activate it,12,13 and there is evidence that both are im-
portant. TSP-1 is one of the few molecules that can bind both
latent and active TGF-b, and it activates this cytokine by
inducing a conformational change.14 Interestingly, the matrix
metalloproteinases 2 and 9 (MMP-2 and MMP-9) have been
implicated as activators of TGF-b.15 Notably, the CD44
hyaluronan receptor provides a cell-surface receptor for
proteolytically active MMP-9, which proteolytically cleaves
and activates latent TGF-b. These interactions of CD44,
MMPs and TGF-b on the cell membrane appear to affect
cancer cell motility, invasion and metastasis.16

It should be noted that LAP-TGF-b is usually secreted as a
large latent complex consisting of LAP-TGF-b covalently
bound to a latent TGF-b-binding protein (LTBP).4,17 At least
three LTBP isoforms bind TGF-b, and it has been proposed
that the LTBPs serve as structural components of the ECM
and modulators of TGF-b availability. Indeed, LTBPs target
latent TGF-b to the ECM. For instance, they concentrate
TGF-b to elastin fibrils and fibronectin-rich pericellular
fibers.17 Deficiency of LTBP-4 in mice results in defective
elastin structure, developmental abnormalities, emphysema
and colorectal cancer.4,17

All three TGF-bs use the same receptor and it has three
components: type I (RI, or ALK5); type II (RII) and type III
(RIII, or betaglycan).1–3,6 RIII binds TGF-b (all isoforms)

and recruits TGF-b to RII, which then phosphorylates RI to
form a heterotetrameric serine/threonine kinase complex. In
turn, RI phosphorylates Smad2 and Smad3 (receptor-asso-
ciated Smads (R-Smads)), and the latter form a heteromeric
complex with Smad4, which translocates to the nucleus,
binds to DNA and regulates transcription (Figure 2). Sti-
mulation of cells with TGF-b can result in the activation or
repression of hundreds of genes.6 In contrast to these Smads,
Smad7 inhibits TGF-b signaling. TGF-b also signals through
MAPK pathways, and this can lead to a switch from tumor
suppression to promotion. Indeed, several signaling mole-
cules are activated by TGF-b (eg, ERK, c-Jun NH2-terminal
kinase (JNK), p38, PI3K, Akt and Rho-like GTPases),2,3 and
there is complex cross-talk between the Smad pathway and
other pathways.

In endothelial cells, ALK1 is an additional type 1 receptor,
and endoglin acts as a type III-like receptor. The classic TGF-
b/ALK-5 (Smad2/3) pathway inhibits endothelial cell pro-
liferation and migration, whereas the alternative TGF-b/
ALK1 (Smad1/5) pathway has the opposite effect.18,19 The
role of endoglin is not fully elucidated, but it promotes ALK-
1 signaling, and endothelial cells lacking endoglin do not
proliferate because TGF-b/ALK1 signaling is decreased and
TGF-b/ALK5 signaling is increased.19 Interestingly, many
mutations of either the ALK1 or endoglin genes have been
associated with hereditary hemorrhagic telangiectasia.18

Figure 2 TGF-b signaling and inhibition. TGF-b must be activated by the release of LAP or a conformational change to bind to its signaling receptors.

Signals are transduced through a Smad pathway and a number of non-Smad pathways, with complex cross-talk. ALK5 phosphorylates Smad2 and Smad3,

which form a complex with Smad4. This complex translocates into the nucleus and (in association with other molecules) binds to DNA, and either activates

or represses gene expression. In contrast, Smad7 inhibits ALK5 signaling. Therapeutically, TGF-b activity can be reduced or blocked in many ways (denoted

by red boxes), including neutralization of TGF-b with mAbs or soluble receptors, blockage of ALK5 activity with small drugs or Smad7, prevention/

degradation of TGF-bmRNA translation with antisense ODNs or siRNA. The mode of action of tranilast is not elucidated, but it inhibits TGF-b production and

receptor expression, and reduces signaling through both Smad and non-Smad pathways. ALK5, activin receptor-like kinase 5 (TGF-b type I receptor); LAP,

latency-associated peptide; mAbs, monoclonal antibodies; ODNs, oligodeoxynucleotides; siRNA, small inhibitory RNA; RII, type II TGF-b receptor; TAK1,

TGF-b-activated kinase 1.
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There are several non-signaling receptors of TGF-b, and
some were mentioned above (M6P/IGFII-R, TSP-1, avb6).
Recently, we have identified neuropilin-1 (Nrp1) as a novel
membrane protein that binds TGF-b (Y Glinka, GJ Prud’-
homme, manuscript in preparation). Nrp1 is a multi-func-
tional protein known as a receptor for both semaphorins and
VEGF,20 but it is also expressed by cells of the immune sys-
tem, particularly DCs and Tr cells.21,22 Nrp-1 and/or its
homolog Nrp2 are expressed by most cancers, and appear to
contribute to their malignant phenotype.20 Remarkably,
Nrp1 binds both latent and active TGF-b, and we hypothesize
that it plays an important role in immunoregulation, through
its ability to capture this cytokine.

In the plasma, a2-macroglobulin binds TGF-b and se-
questers it in an inactive form.23 This may be essential to
rapidly neutralize circulating active TGF-b. Of note, TGF-b
binds to several extracellular matrix components such as
TSP-1, decorin, fibronectin, elastin, some collagens and other
molecules.4,17 Thus, the matrix acts as a reservoir for TGF-b
(and many other cytokines and growth factors), possibly
allowing its release during pathological conditions.

TGF-b AND IMMUNE REGULATION
TGF-b is clearly a master regulator of the immune response,
and it exerts inhibitory effects on cells of all arms of the
immune system, including Th1 cells, Th2 cells, CTLs, mac-
rophages, NK cells, B cells and polymorphonuclear leuko-
cytes (granulocytes). These multiple effects of TGF-b have
been reviewed in the recent literature,3,6,9 and are highly re-
levant to autoimmune diseases.24 Importantly, it also pre-
vents DC maturation.3,25 On the other hand, TGF-b has
potent chemoattractive properties (even at femtomolar
concentrations), which can lead to the rapid accumulation of
macrophages, granulocytes and other cells at the site of in-
flammation.26,27 The inflammatory component is amplified
by the ability of TGF-b to induce differentiation of Th17
cells. Indeed, when naı̈ve T cells are activated in the com-
bined presence of TGF-b and IL-6, they differentiate into
Th17 cells.10,28 However, this is highly context dependent,
because Th17 differentiation is blocked by a number of cy-
tokines such as IL-2, IL-4, IL-27 and IFN-g.10,28–31 The Th17
cells secrete large amounts of IL-17, which sustains acute
inflammation by recruiting granulocytes, and also by pro-
moting the secretion of other inflammatory cytokines. Of
note, it was recently reported that, in the presence of IL-6,
TGF-b1 produced by Tr cells can contribute to Th17 differ-
entiation and, remarkably, some CD4þCD25þFoxp3þ Tr
cells themselves differentiated into Th17 cells.32 It appears
that TGF-b can exert inflammatory effects early after tissue
injury, but is subsequently anti-inflammatory, highlighting
its bipolar nature.9 TGF-b can also either increase or decrease
apoptosis of lymphocytes, depending on their phenotype and
stage of differentiation.3 In general, it promotes T-cell sur-
vival, but induces apoptosis of immature and resting B cells.

The immunosuppressive effects are most apparent on T
cells.3,6 For instance, TGF-b inhibits both T-cell proliferation,
by targeting cell cycle regulators, and IL-2 production by
blocking its transcription. The blockade of IL-2 production is
highly dependent on Smad3. Other Th1 cytokines, such as
IFN-g, are also inhibited. Furthermore, TGF-b inhibits the
differentiation of Th1 cells, Th2 cells and CTLs. In CTLs and
NK cells, TGF-b is a strong antagonist of both IFN-g pro-
duction and cytolytic activity. TGF-b is also an important
negative regulator of B-cell proliferation and differentia-
tion.33 Interestingly, it inhibits production of most im-
munoglobulin isotypes, except IgA, which is enhanced.33,34

This promotion of IgA production corresponds to a pro-
tective role of TGF-b in mucosal immunity.

Studies of TGF-b1 KO mice have clearly established the
important anti-inflammatory functions of this cytokine.7,8

These mice die within 3–4 weeks of birth of a multi-organ
inflammatory syndrome involving the heart, skeletal muscle,
lungs, liver, stomach, pancreas, brain, eyes, salivary glands
and other tissues. The inflammatory infiltrate tends to be
perivascular and consists of lymphocytes, macrophages and
granulocytes, in varying proportion from organ to organ.
There is evidence for increased leukocyte–endothelial cell
interactions.8 These mice have evidence of autoimmunity,
including circulating anti-dsDNA, anti-ssDNA, other anti-
nuclear antibodies and glomerular immune complex disease.
This syndrome shares features with human SLE, Sjögren’s
syndrome, GVHD and polymyositis. Note that these findings
apply only to TGF-b1 KO mice, while TGF-b2 or TGF-b3 KO
mice die before or shortly after birth from developmental
abnormalities.4,7 These mice have cleft palate and defective
lung development and, in the case of TGF-b2, also defects of
the cardiovascular system, bones, urogenital structures and
other tissues.

In the absence of TGF-b1, there is lymphoproliferation and
markedly increased numbers of activated lymphocytes in
lymphoid organs, as well as an increased expression MHC
class I and II molecules (which are normally downregulated
by TGF-b1).35 There is also overproduction of several in-
flammatory cytokines,35 including MIP-1a, IL-1b, TNF-a
and IFN-g. Anti-CD4 antibodies are protective and, similarly,
autoimmune disease is diminished in TGF-b1�/� and MHC
II�/� (double knockout) mice,36,37 demonstrating a role for
Th cells. As might be expected, mice with severe combined
immunodeficiency (SCID mice) are protected from this
inflammatory syndrome.

In early studies, TGF-b1 KO affected all cells and it was
difficult to confirm that inflammation was dependent on a
T-cell defect. However, this question has been addressed with
transgenic mice expressing mutant receptors, or more limited
genetic deletions. For instance, mice with a deletion of TGF-
bRII restricted to T cells develop a severe autoimmune dis-
ease and die before 5 weeks of age, and are similar to com-
plete TGF-b1�/� mice.38 Mice with T cells expressing a
dominant-negative TGF-bRII receptor have milder disease,3
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probably because of residual receptor function. Interestingly,
mice with T cells unable to produce TGF-b1 (rather than a
receptor defect) also have a milder disease, most likely
because of production this cytokine by other cells.39

In recent years, much attention has been directed at the
effects TGF-b on Tr-cell differentiation and function. A de-
tailed discussion of this topic is beyond the scope of this
paper, but several recent reviews are available.3,6,9,40,41

The differentiation of natural Tr cells (nTr cells) of
CD4þCD25þFoxp3þ phenotype in the thymus appears to be
TGF-b independent. In contrast, the differentiation of induced
(adaptive) Tr cells (iTr cells) in the periphery is highly TGF-b
dependent. Indeed, TGF-b induces the differentiation of
Foxp3þ Tr cells from either antigen- or CD3mAb-stimulated
CD4þCD25�Foxp3� precursors, and this effect is greatly
enhanced by IL-2.42 Furthermore, in the periphery, TGF-b
appears essential for the maintenance of Foxp3 expression,
regulatory function and homeostasis of both nTr and iTr
cells.41,43–45 The process of naı̈ve T-cell differentiation to the
Foxp3þ iTr phenotype requires both T-cell receptor (TCR)
signaling and TGF-b stimulation, and the persistence of this
phenotype is dependent on TGF-b.45 Indeed, in the case of iTr
cells removal of TGF-b results in Foxp3 loss in vitro; and after
adoptive transfer of these cells it is also downregulated rapidly
in vivo (2 days), except for a small residual population.45 This
loss of Foxp3 expression is much less in nTr cells. There is also
evidence that the cytokine profiles of iTr and nTr cells are
rather similar, showing low IL-2, IL-4, IL-5, IFN-g and TNF-a
production, but high IL-10 production.45

A separate and more controversial issue is whether TGF-b
contributes to the suppressive activity of Tr cells. In the case
of nTr cells, suppression appears to be dependent on direct
cell contact, and has been observed (at least in vitro) in the
complete absence of TGF-b.41 The issue of contact depen-
dence, however, does not exclude a role for TGF-b, because
LAP-TGF-b has been reported on the membrane of both nTr
and iTr cells, and might suppress through a contact-depen-
dent mechanism.46 Effector T cells engineered to be un-
responsive to TGF-b (dominant-negative RII) are resistant to
the suppressive activity of Tr cells.47 Furthermore, the results
of some in vivo studies, including a recent one with TGF-
b-null T cells,39 reveal an important role for TGF-b as an
effector molecule of Foxp3þ Tr cells. Indeed, TGF-b
was required to inhibit both Th1 differentiation and
inflammatory bowel disease.

It seems likely that Tr cells can suppress by more than one
mechanism, depending on the type of immune response or
inflammation that is occurring. It is important to add that
Th3 cells, which contribute to some forms of immune
tolerance (especially when orally induced), produce TGF-b
which appears to be their main mode of suppressive ac-
tion.48,49 In addition, Tr1 regulatory T cells,50 which are
particularly relevant to the control of inflammatory bowel
disease, secrete IL-10 and TGF-b, which both exert important
regulatory effects.

TGF-b IN HEALING AND FIBROSIS
Wound repair is a complex multi-phase process, involving
inflammatory cell chemotaxis, fibroblast proliferation, col-
lagen and matrix deposition, angiogenesis, reduced matrix
degradation by metalloproteinases, remodeling and, in the
skin, re-epithelialization.51–53 Early on, fibroblasts and en-
dothelial cells migrate to the wound site, where they form
highly vascular granulation tissue. Fibroblasts in granulation
tissue transform into myofibroblasts, and eventually the
lesion evolves into a scar with dense collagen, and much
reduced vascularity and cellularity. In hypertrophic scars and
other pathological fibrosis, there is retention of a high
number of fibroblasts and myofibroblasts, and an abundant
immature collagen matrix.

TGF-b stimulates most of the processes of wound healing
(in collaboration with many other growth factors), and is a
major profibrotic factor.4,53–56 Connective tissue growth
factor (CTGF), which is induced by TGF-b, is a major con-
tributor to this process.53–55 TGF-b also induces endothelin-
1, and TGF-b/endothelin-1 interactions may play a role in
the development of fibrosis in scleroderma55 and myocardial
disease.54 When TGF-b is overproduced there is excessive
collagen and matrix deposition, culminating in organ dys-
function or failure. Inflammation, ischemia, radiation and
toxins are all initiation factors for fibrogenesis, and it can
adversely affect the lungs, heart, liver, kidneys and other or-
gans and tissues. This has been demonstrated, for example,
by TGF-b gene transfer into the lung,57 and in bleomycin-
induced pulmonary fibrosis.56 Indeed, cancer chemotherapy
with bleomycin results in TGF-b production in the lung, and
subsequent pulmonary fibrosis, which is a major adverse
effect. The Smads are involved, and Smad3-null mice resist
TGF-b-induced pulmonary fibrosis.57 The importance of
fibrosis in human disease cannot be understated, and it
responds poorly (if at all) to current therapies.

TGF-b IN CANCER: TUMOR SUPPRESSION VS
PROMOTION
As mentioned previously, TGF-b can act as either a tumor
suppressor or a tumor promoter.58–64 Suppression of tumor
cell growth by TGF-b depends on its ability to upregulate
cyclin kinase inhibitors. However, as pre-malignant lesions
progress they become refractory to growth inhibition, and
begin to produce large amounts of TGF-b. Many malignant
tumors have mutated or downregulated TGF-bRII receptor,
or other abnormalities of the TGF-b signaling pathways.65

TGF-bRIII (betaglycan) loss or downregulation has also been
linked to breast cancer progression.66

With tumor progression, TGF-b becomes a tumor
promoter and induces epithelial-to-mesenchymal transition
(EMT) by Smad-dependent and -independent pathways.67–69

EMT is associated with increased secretion of MMPs, which
promote tumor intravasation or extravasation. The effects of
TGF-b on EMT, tumor growth or metastasis can be dis-
sociated, and might be dependent on different signaling
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pathways.68,69 Interestingly, a mutated TGF-b type I receptor
unable to bind Smad2/3, but with a functional kinase domain
(capable of activating MAPK and other pathways) showed
that deficient Smad2/3 signaling increased the malignancy of
a well-differentiated xenografted tumor cell line (higher
proliferative index and more malignant histologic features),
but suppressed formation of lung metastases by a more ag-
gressive variant of this cell line.60 This suggests a dominant
role for Smad2/3 signaling pathway in both the tumor sup-
pressor and prometastatic activities of TGF-b. These authors
also reported that non-Smad signaling pathways, including
p38 and JNK, cooperated with TGF-b/Smads in enhancing
the migration of metastatic cells, but the non-Smad pathways
were not sufficient for inducing metastasis. At any rate, tu-
mor cells respond aberrantly to TGF-b, but TGF-b signaling
appears to be required for both invasiveness and metastasis in
late-stage tumorigenesis.70 Furthermore, TGF-b plays an
important role as a mediator of interactions between stromal
cells and tumor cells, and it regulates the tumor micro-
environment.65

A recent study in a transgenic murine model of breast
cancer revealed that radiotherapy or chemotherapy with
doxorubicin increased systemic levels of TGF-b1, and circu-
lating tumor cells and lung metastases.71 These negative ef-
fects of cancer therapy were reversed by the administration of
a neutralizing anti-TGF-b mAb (2G7). It has been known
since the early 1990s that anti-TGF-b antibodies are protec-
tive against experimental breast carcinoma. The in-
traperitoneal (i.p.) injection of 2G7mAb (like 1D11 it
neutralizes the TGF-b1, 2, 3 isoforms) in nude mice reduced
the i.p. tumor growth and lung metastases from i.p. injected
MDA-231 human breast cancer cells.72 2G7 Therapy was
associated with increased NK cell activity, and these cells were
required for the antitumor effect. The impact of over-
expressed TGF-b or activated Smad pathways in the devel-
opment of a malignant tumor phenotype or metastatic
disease has been demonstrated in several transgenic models.73

In contrast, TGF-b blockade can be protective.73 However, in
an experimental models of mouse mammary carcinoma,
conditional KO of TGF-bRII in mammary epithelial cells
reduced tumor latency and increased lung metastases,59

presumably because of the loss of TGF-b’s tumor suppressor
effect at the earliest stages of disease. These studies suggest
that inhibiting TGF-b might not be beneficial in patients
genetically predisposed to cancer (since it would remove a
tumor suppressor effect), but could ameliorate disease in
patients who present with existing TGF-b-producing cancers.
TGF-b is produced by a wide variety of tumors (of
breast, lung, GI tract, pancreas, ovary, CNS, skin/melanoma
and other).61–65,74 Interestingly, elevated TGF-b1 plasma
levels are frequently observed in cancer patients, and this
generally correlates with a poor prognosis,75–79 although
these levels are notoriously difficult to measure due to partial
platelet degranulation (platelets contain large amounts of
TGF-b1).

Importantly, TGF-b stimulates production of CTGF, en-
dothelin-1 and VEGF,53–55,80,81 and all these factors collabo-
rate in promoting the formation of a vascular and fibrous
tumor stroma. Moreover, TGF-b attracts macrophages and
other inflammatory cells to the stroma, and these cells secrete
various mediators and growth factors that sustain tumor
progression.65 Some of these infiltrating leukocytes differ-
entiate into myeloid suppressor cells, which have broad
immunosuppressive properties.82 TGF-b (produced by either
tumor or stromal cells) also directly exerts a wide spectrum of
immunosuppressive effects, and induces the differentiation of
Tr cells, markedly limiting antitumor immunity. TGF-b in-
hibits DC functions and interferes with immunization with
DC-based vaccines.83 In accord with the suppressive role of
TGF-b, effector CD8þ T cells expressing a dominant-nega-
tive TGF-bRII are more effective at eliminating tumors.84

One of the most clinically relevant aspects of TGF-b in
cancer is its ability to promote bone metastasis.85–91 This is
particularly relevant to breast carcinoma, where bone meta-
stases give rise to debilitating disease. This feature can be
targeted for cancer therapy. For instance, in a human breast
cancer xenograft model (in nude mice), an ALK5 inhibitor
reduced the incidence of both lung and bone metastases.90 In
breast carcinoma, TGF-b acts (at least in part) by stimulating
the production of parathyroid hormone-related protein
(PTHrP),86,87,91 which stimulates bone resorption by osteo-
clasts and the formation of osteolytic bone metastases. The
stimulation of PTHrP is dependent on both the Smad and
the p38 MAPK pathways of TGF-b signaling.91 TGF-b is
stored in the bone matrix and can be released during
osteolysis. Other mediators such as IL-8, CTGF, chemokine
receptor CXCR4, IL-11, MMPs and osteopontin have
been implicated in the formation of bone metastases.88 Since
TGF-b can upregulate production of CTGF, IL-11 and
MMPs, these factors are likely to interact in the metastatic
process. CD44 also appears to be important. It binds
to matrix hyaluronan and has various tumor promoting
activities and, as noted previously, might contribute to the
activation of TGF-b.16

THE INHIBITION OF TGF-b ACTIVITY FOR THERAPEUTIC
PURPOSES
Several large- and small-molecule drugs inhibiting TGF-b are
being tested in preclinical and clinical trial (ranging from
phase I to III) (Table 1). There have been several reviews of
these drugs in the treatment of various conditions,73,74,92–103

and the author will discuss more extensively some agents that
have received less attention, such as tranilast and angiotensin
II (AngII) blockers. The therapeutic agents being most stu-
died include mAbs, soluble TGF-b receptors, antisense oli-
gonucleotides (ODNs) and inhibitors of ALK5 (TGF-bRI)
(Tables 1 and 2; Figure 2). These TGF-b inhibitory drugs are
currently being developed primarily to treat either fibrotic
disease or cancer, and some salient findings are summarized
in Table 1, although this list is not complete and reviews
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containing additional information are quoted. At least a
dozen ALK5 inhibitors are being developed by pharmaceu-
tical companies. They have the advantage of being small
drugs that can be administered orally, and have shown ef-
fectiveness in preclinical models against pulmonary fibrosis,
other fibrotic diseases and various malignant tumors. It is
interesting that an ALK5 inhibitor was able to ameliorate
both early acute fibrogenesis and established fibrosis in a
TGF-b-induced model of pulmonary fibrosis.109 Despite
some highly encouraging results, none of the drugs listed in
Table 1 is yet approved for regular clinical use.

However, some drugs commonly used to treat other dis-
eases can inhibit TGF-b production and/or action (Table 2).
This includes antihypertensive drugs that block the renin–
angiotensin–aldosterone (RAS) system. This relates to the
fact that AngII stimulates TGF-b production in the kidney
and elsewhere.53,100,147,148 Another important inhibitor of
TGF-b is the antiallergic/antifibrotic drug tranilast, used
clinically in Japan for many years. These less specific agents

may have some therapeutic advantages, at least in some
diseases, because they target other aspects of the pathological
process and are generally of low toxicity. Furthermore, in the
case of cancer, there is a growing realization that drugs that
act on a single molecular target may be less effective than
those that have multiple targets, because tumor cells mutate
rapidly.

ADVERSE EFFECTS OF TGF-b INHIBITION
In view of the many biological effects of TGF-b, including its
anti-inflammatory activity, it might be assumed that its
inhibition would be highly detrimental. However, contrary
to expectations, severe toxicity has not been observed
when TGF-b was inhibited by a variety of agents in adult
rodents or humans. This paucity of adverse effects
undoubtedly results from incomplete inhibition of TGF-b
activity, because null mutations in mice, as noted previously,
produce a rapidly fatal inflammatory syndrome. Ruzek
et al104 observed only minimal pathologic alterations in

Table 1 Examples of drug-mediated specific inhibition of TGF-b

Type/drug target Diseases targeted Stage/observations References

mAbs (pan-TGF-b; TGF-b2 or TGF-b2,3) Fibrosis

Renal disease

Cancer

Heart disease

Radiation injury

Preclinical and clinical phases I–III. Preclinical

studies (eg, with mouse1D11 or 2G7 mAb)

show positive effects in rodent fibrosis, renal

disease, cancer and other, but reveal some

adverse effects at high doses (see text)

71–73,92,94,96,100,104

Soluble TGF-bRII receptor constructs (with or

without Ig fusion) Target TGF-b1, 3. Protein or

gene therapy

Cancer Preclinical. Effective in cancer models (pancreas,

colon, lymphoma, other). Few adverse effects in

transgenic mice, and reduced mammary tumor

metastases

96,98,100,105

Soluble TGF-bRIII, or P144 peptide. Targets

TGF-b (b24b34b1)

Cancer

Fibrosis

Preclinical. Effective against human breast

cancer xenografts (MDA-MB-231) in nude mice

66,106–108

Natural TGF-b-binding proteins (decorin, other) Glomerulopathy

Cancer

Preclinical. These proteins do not neutralize all

TGF-b isoforms equally, and are not completely

specific

94,97,98,102

Nucleic acid-based therapies (antisense ODNs,

ribozymes, siRNA, Smad7)

Cancer Antisense ODNs are at an advanced stage of

clinical development for high-grade gliomas.

Other agents are at a preclinical stage. Delivery

of these agents is challenging

92,96,97,100,101

ALK5 inhibitors (GW6604, Ly580276, Ly2157299,

SB-505124, SB- 431542, SD-208, several others)

Fibrosis

Cancer

Preclinical or phase I. Advantage of orally active

small drugs. Have incomplete specificity for

ALK5. Predominantly tested in fibrosis models.

Can block breast cancer metastasis

73,90,92,94–97,109

ALK5, activin receptor-like kinase 5 (alternative name for the TGF-b type I receptor); mAbs, monoclonal antibodies; ODN, oligodeoxynucleotides; P144, peptide
derived from the TGF-bRIII sequence (inhibits TGF-b); RII, type II TGF-b receptor; RIII, type III TGF-b receptor; siRNA, small inhibitory RNA; TGF-b, transforming
growth factor b.
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major organs or tissues, or in lymphocyte numbers
and function, in mice chronically treated with an anti-TGF-b
mAb (1D11) that neutralizes all three isoforms. Doses
of up to 50 mg/kg three times a week (resulting in blood
levels of 1–2 mg/ml) for 12 weeks were investigated. Similarly,
transgenic mice expressing a soluble TGF-bRII-Fc fusion
protein that neutralizes TGF-b1 and TGF-b3 did not develop
severe pathology and usually had only mild inflammatory
lesions, despite lifetime exposure to that protein.105 There
was also no increase in spontaneous tumorigenesis. Never-
theless, some pathological consequences have been noted in
other studies, especially when TGF-b inhibitory agents are
applied at high doses. Thus, although 1D11 antibody ad-
ministration was well tolerated at low therapeutic doses, at
high doses it induced epithelial hyperplasia of the tongue in

mice, associated with dysphagia and weight loss, and
increased progression to carcinoma in a model of familial
adenomatous polyposis (data presented by Scott Lonning,
Genzyme Corporation, at TGF-b in Cancer and Other
Diseases conference, La Jolla, CA, 2006). In this respect, it is
of some concern that TGF-b blockade accelerates the pro-
gression of tumors in some genetically determined cancer
models.59 Evidently, the incidence of tumors in patients
treated with TGF-b inhibitors should be closely monitored.
In addition, inhibition of ALK5 signaling has been reported
to induce physeal dysplasia in rats.160 Undoubtedly,
other adverse effects will occur, and the consequences of
very long-term treatment in humans are not known, and
TGF-b blockade might become pathogenic above a certain
threshold.

Table 2 Examples of multi-action drugs that inhibit TGF-b

Drug Disease relevance Stage/observations References

Tranilast Allergy

Fibrosis

Autoimmunity

Renal

disease

Cardiomyopathy

Diabetic complications

Crohn’s disease

Cancer

In clinical use for allergy and fibrotic disease in

Japan. Inhibits TGF-b, VEGF, PGE2 and several

cytokines. Exerts antiproliferative, anticancer

and immunosuppressive effects. Low toxicity

103,110–146

Inhibitors of renin–angiotensin system (ACE

inhibitors; AT1 receptor blockers)

Hypertension

Renal disease

Congestive heart failure

Pulmonary fibrosis

Cirrhosis

Scleroderma

Muscular dystrophy

Cancer

Commonly prescribed antihypertensive drugs,

with few adverse effects. Block AngII induction

of TGF-b and decrease TGF-b levels

53,139,147–153

HMG CoA reductase inhibitors (statins) Hypercholesterolemia

Cardiomyopathy

Fibrosis

Renal disease

Diabetes

Commonly prescribed cholesterol-lowering

drugs, with few adverse effects. Statins inhibit

the effects of TGF-b on CTGF induction and fi-

broblast collagen synthesis

99,154–157

Pirfenidone Fibrosis

Neurofibromatosis

Cancer

Asthma

Multiple sclerosis

This antifibrotic drug has been shown to inhibit

TGF-b production. It has been reported to exert

anticancer and anti-inflammatory effects. It may

be of benefit in pulmonary fibrosis, asthma and

multiple sclerosis

100,158,159

ACE, angiotensin-converting enzyme; AngII, angiotensin II; AT1, angiotensin II type 1 receptor; CTGF, connective tissue growth factor; HMG CoA, 3-hydroxy-3-
methylglutaryl-coenzyme A; PGE2, prostaglandin E2; TGF-b, transforming growth factor b; VEGF, vascular endothelial growth factor.
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DRUGS WITH MULTIPLE ACTIONS THAT INHIBIT TGF-b
Tranilast (N-[3,4-Dimethoxycinnamoyl]Anthranilic Acid)
This drug was developed by Kissei Pharma (Japan) and has
been studied in several thousand patients for various in-
dications.110 It blocks mast cell degranulation and has been
used clinically in Japan and South Korea for the treatment of
allergic disorders (asthma, allergic rhinitis and atopic
dermatitis).110–114 In addition, it has potent antifibrotic
effects,110,115–117 and has been successfully used for the
treatment of hypertrophic scars and keloids. It might also
find applications in renal disease and myocardial fibrosis.111

Importantly, many years of clinical use have revealed that it is
safe and well tolerated by most patients at doses of up to
600 mg/day for months.110 Obviously, this represents a major
advantage over other drugs that are in the early or mid-phase
of development. In animals, the antifibrotic effects of trani-
last have been demonstrated extensively in various disease
models.111,118–125 They are also apparent in a newly described
in vitro model of fibrosis, designed for screening antifibrotic
drugs.126

The mechanisms of tranilast’s antifibrotic effects are not
fully understood, but a major effect is the inhibition of both
TGF-b expression and action.115,123–139 In cell culture assays,
tranilast inhibited both TGF-b secretion and TGF-b receptor
expression.12,129 Furthermore, it inhibited phosphorylation
of Smad2125 and ERK,131 suggesting that it impedes both
Smad-dependent and -independent TGF-b signaling path-
ways. Gilbert and co-workers125,133,136 examined the effects of
tranilast on TGF-b-induced matrix synthesis, and found that
it was suppressed both in vitro and in vivo. These in-
vestigators assessed TGF-b expression in target tissues, as
wells as Smad phosphorylation, by examining the expression
of phosphorylated Smad2 with an mAb that detects only the
phosphorylated form. Their studies showed dramatic
attenuation of both molecules with tranilast treatment.

However, this inhibitory effect is not specific, as tranilast
also inhibits the production of other cytokines, including
IL-6, IL-12, IFN-g, and monocyte chemoattractant protein-
1.123,132,140,141 As such, it exerts at least mild im-
munosuppressive effects. For instance, we recently found that
it inhibits production of IL-17 by lymphocytes and tumor
cells (unpublished observations). This cytokine has been
linked to both autoimmunity and tumor progression.10

Interestingly, tranilast was protective against experimental
autoimmune encephalomyelitis (EAE),140 where IL-17 is
thought to play an important pathogenic role. In addition,
tranilast strongly inhibits PGE2 production132 and antag-
onizes the effects of VEGF;142 two mediators that are involved
in immunity, wound healing and cancer progression.

In recent years, on the basis of successful preclinical
studies, tranilast was investigated for the prevention of
restenosis after percutaneous transluminal coronary re-
vascularization (PRESTO clinical trial), but was not found
effective in that application. However, there is early evidence
that it might be effective against intestinal stricture progres-

sion in Crohn’s disease143 (which is partly TGF-b dependent).
If confirmed, this would be of considerable interest because
more specific inhibitory drugs, such as ALK5 blockers, might
enhance the inflammatory component of the disease by
removing TGF-b’s suppressive effect. In contrast, tranilast
appears to be able to inhibit TGF-b while maintaining an
immunosuppressed environment, presumably through the
co-inhibition of inflammatory mediators.

Tranilast has notable antitumor effects, but the mechan-
isms are not fully understood and might involve several
factors. In vitro, it exerts antiproliferative effects on fibro-
blasts, vascular smooth muscle cells, lymphocytes and tumor
cells131,140,144–146,161 (our unpublished observations). It in-
hibits the proliferation of uterine leiomyoma cells in vitro
through G1 arrest associated with the induction of the cyclin-
dependent kinase inhibitor p21 and the tumor suppressor
p53.145,146 In addition, as noted above, it inhibits PGE2 and
VEGF effects that are relevant to tumor progression.

In tumor cell cultures of various origins (eg, breast, sto-
mach, lung, pancreas, CNS/glioma) it inhibited TGF-b (all
isoforms examined) and antagonized TGF-b-mediated effects
on cell migration and proliferation at non-cytotoxic con-
centrations. In vivo, it inhibited the growth of 9L glioma cells
and reduced the expression of TGF-b2.131 The proliferation
of the human schirrhous gastric cancer cell line OCUM-2M
was inhibited in vivo by tranilast alone, or in combination
with cisplatin.162 Interestingly, the invasive ability of OCUM-
2D cells was significantly increased by co-culturing with
fibroblasts (NF-10 cells), which produce TGF-b1 and this
effect was countered by tranilast.134 Other investigators163

reported that tranilast inhibited growth and lymph-node
metastasis of the OSC-19 human squamous cell carcinoma
cell line in nude mice. Fibrous tissue, microvessel density, and
the PCNA labeling (proliferative) index of the tumors were
significantly reduced. Similarly, tranilast exerted antitumor
and antiangiogenic effects in a murine Lewis lung carcinoma
model, and it potentiated the effects of cyclophosphamide,
adriamycin and other anticancer drugs.164

INHIBITORS OF ANGII ACTIVITY
There are multiple interactions between the RAS and TGF-b
pathways, some of which can be blocked with anti-
hypertensive drugs.53,147–149 Indeed, AngII increases TGF-b
production by some cell types in the kidney, cardiovascular
system and other tissues. It also enhances the expression of
the TGF-b receptors through the MAPK pathway.165 More-
over, AngII can activate the Smad signaling pathway in-
dependently of TGF-b.53 Both AngII and TGF-b increase
release of CTGF. As a result, increased levels of AngII, as in
many diseases, can lead to fibrosis and various TGF-b-related
pathology. In this respect, it should be noted that TGF-b
participates in several cardiovascular conditions including
healing myocardial infarcts (MIs), coronary artery restenosis,
cardiac hypertrophy, hypertrophic and dilated cardiomyo-
pathies, and hypertension. It also has a complex role in
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atherosclerosis, which is still being elucidated. Similarly,
TGF-b can be linked to many renal diseases, where there is
either glomerulopathy or interstitial fibrosis.

Drugs that inhibit the RAS include angiotensin-converting
enzyme (ACE) inhibitors and antagonists of the AngII type 1
receptor (AT1). They are safe drugs commonly used to treat
hypertension, but clearly have activities beyond their anti-
hypertensive effects, including inhibition of TGF-b. For in-
stance, Losartan, an AngII receptor blocker, reduced TGF-b
production and ameliorated disease in a rat model of bleo-
mycin-induced pulmonary fibrosis.150 Similarly, it inhibited
TGF-b production in mice with either fibrilin-1 or dystro-
phin deficiency, and this improved muscle regeneration in
these disease models.151 Interestingly, some investigators have
shown that high glucose levels stimulate TSP-1-dependent
TGF-b activation in glomerular mesangial cells.152 TSP-1, as
mentioned previously, activates latent TGF-b. They found
that AngII also upregulated TSP-1 production and TSP-1-
dependent TGF-b activation by mesangial cells and, fur-
thermore, that rat cardiac fibroblasts responded similarly.
These AngII effects were blocked by Losartan. The glucose
and AngII stimulation of TGF-b activation appear to be
synergistic, and this is clearly relevant to both diabetes
and hypertension.

In the remnant kidney model, characterized by renal TGF-
b production and associated glomerulosclerosis and inter-
stitial fibrosis, both tranilast and the ACE inhibitor peri-
ndopril were protective.139 Both drugs were capable of
inhibiting TGF-b activity as manifested by reduced nuclear
phosphorylated Smad2. The combination of the two drugs
was more effective than either alone, and perindopril pro-
vided the additional benefit of blood pressure reduction. Of
note, the ACE inhibitor was at least as effective as tranilast in
suppressing the TGF-b response. However, from the current
literature, it does not appear that inhibitors of the RAS
system are as effective as tranilast in mediating anti-
inflammatory, antiproliferative and anticancer effects.

Clinically, treatment with ACE inhibitors or AngII receptor
antagonists appears to alleviate TGF-b-dependent pathology
in several renal and cardiovascular diseases.53,149 It seems
likely that they would also be of benefit in cirrhosis and other
diseases characterized by fibrosis. In view of their favorable
safety profile, they might be appropriate agents to treat these
conditions. However, at least in renal disease, recent studies
suggest that these drugs are more effective in rodent disease
models than in humans.153 Interestingly, statins have anti-
fibrotic and anti-inflammatory activity, and may interfere
with some TGF-b-mediated effects (Table 2). However, the
mechanism of action and clinical significance of statins in the
context of TGF-b-induced disease have not been extensively
characterized.

TGF-b DELIVERY FOR THERAPEUTIC PURPOSES
In the previous sections the author has concentrated mostly
on the negative effects of TGF-b, but this cytokine has several

positive effects that might also be amenable to therapy. This
includes autoimmune diseases, as we have previously re-
viewed,24,166 wound healing and cardiac remodeling after
ischemic injury.

In preclinical models of autoimmune disease, we and
others found that TGF-b gene therapy, or in some cases
protein therapy, is beneficial in autoimmune (type 1) dia-
betes (T1D), EAE, inflammatory bowel disease and various
types of arthritis.24,166 It should be noted that both active and
latent TGF-b were effective but, in the case of protein ther-
apy, relatively large amounts had to be administered. The use
of gene therapy approaches, such as intramuscular delivery of
expression plasmids, or administration of various viral vec-
tors, allows relatively long-term expression of the cytokine at
therapeutic levels.166 Gene transfer with plasmids is greatly
improved by in vivo electroporation and raises fewer safety
concerns than viral therapy,167 but these gene therapeutic
approaches are not approved for clinical use. Furthermore,
there are a number of obstacles to systemic TGF-b therapy,
and its pleiotropic effects raise many safety issues. In animals,
consistent with the known activities of TGF-b1, chronic ad-
ministration (or transgenic overexpression) has led to inter-
stitial fibrosis, glomerulosclerosis, hepatic fibrosis, cardiac
disease and lesions in several other target tissues.1,168 Another
caveat, at least in the area of autoimmune diseases, is the
recent realization that, in conjunction with IL-6, TGF-b
promotes the differentiation of inflammatory Th17 cells. This
is highly context dependent (influenced by many cytokines),
and either beneficial or detrimental effects might be observed
depending on the type of autoimmune disease, or the stage of
disease at the time of treatment.

In clinical trials, systemic therapy has been associated with
nephrotoxicity, anemia and other adverse effects (reviewed in
Flanders and Roberts1). For this reason, TGF-b therapy was
abandoned by most pharmaceutical companies before the
year 2000. Indeed, toxicity and pleiotropic effects are a gen-
eral limitation of therapy with other cytokines as well. In
view of this, local therapies appear more promising, and the
ability of TGF-b to promote healing is of great interest. For
instance, in preclinical trials of diabetic wound healing, this
has been achieved by local electroporation-enhanced TGF-b
gene transfer.169 Whether these gene therapy approaches can
be transferred to the clinic remains to be determined. As a
caveat, a clinical trial of topical TGF-b3 protein therapy of
skin ulcers showed only modest benefits,170 and clinical ex-
perience with local TGF-b therapies remains very limited.
Moreover, local therapies carry the risk of excessive fibrosis
and scar formation.

Another possible application is in the area of cardiovas-
cular disease. TGF-b regulates many of the events of the
healing MI. This ranges from the early inflammatory re-
sponse, to the late fibrotic response and the associated
myocardial remodeling. There is also evidence that TGF-b
can protect cardiomyocytes from ischemic injury, as recently
reviewed.148,171 However, limiting therapeutic intervention,
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there is the realization that TGF-b has both positive and
negative effects on the healing heart,102,148 and is a con-
tributor to cardiac hypertrophy and vascular disease. It can
be beneficial in atherosclerosis by stabilizing plaques,3,102,172

at least in animal models, but it also promotes vascular
restenosis. Therefore, the appropriate timing of either TGF-b
or anti-TGF-b therapy would be critical, and much more
research is required in this area.

Returning to autoimmune diseases, an alternative ap-
proach to TGF-b therapy is the induction of Tr cells that
produce this cytokine. Experimentally, this has been achieved
by induction of oral tolerance,48,49 but in human disease this
approach has met with limited success. However, there is
early evidence that some drugs can induce differentiation of
TGF-b-producing Tr cells, and this might be an avenue for
therapy. Furthermore, we have shown that DNA vaccination
can be applied to the generation of these Tr cells.173 In our
experiments, an autoantigen gene was co-delivered with a
selective CTLA-4 ligand (mutated B7-1). This led to the
generation of Foxp3þ Tr cells that appear to act by produ-
cing TGF-b. CTLA-4 might act by priming the T cell for
responsiveness to TGF-b and subsequent Foxp3 induction.
Other vaccination approaches to induce TGF-b-producing
cells are also feasible.174 In addition, the systemic adminis-
tration of CD3 mAb leads to the generation of TGF-b-pro-
ducing Tr cells and protects mice against autoimmune
diabetes, and this might be clinically applicable.175 In all these
cases, the advantage is that Tr cells are generally antigen
specific, and can home in to the target tissues and, pre-
sumably, exert a local effect rather than a systemic effect.

CONCLUSIONS AND FUTURE PROSPECTS
In this review, the author has demonstrated the pleiotropic
activity of TGF-b in a number of physiological and patho-
logical processes. This cytokine contributes importantly to
healing, immunoregulation and cancer progression. These
effects are highly context dependent, and can be either ben-
eficial or detrimental. However, a large number of diseases
(including cancer) are characterized, at least at some phases,
by TGF-b overproduction and are amenable to anti-TGF-b
therapy. This can be accomplished by several methods, in-
cluding antibodies, soluble receptors, receptor kinase an-
tagonist drugs, antisense ODNs and a number of less specific
drugs that are in widespread or limited clinical use, such as
AngII antagonists and tranilast.

In view of TGF-b’s numerous functions, and potent anti-
inflammatory effects, it might be assumed that its neu-
tralization would be detrimental, or even fatal, but this has
not proven to be the case. Indeed, relatively mild toxicity has
been noted, but some adverse effects have been reported, and
long-term safety remains to be established. Notably, AngII
antagonists have few adverse effects, but the degree to which
they inhibit TGF-b in humans requires further analysis. On
the other hand, the direct administration of TGF-b for
therapeutic purposes is more limited. This is due to toxicity

and safety concerns, but local administration appears fea-
sible, especially to promote wound healing.

Finally, the immunomodulatory effects of this cytokine are
critically important, and the realization that it plays a key role
in Tr-cell differentiation and survival is of major clinical in-
terest. Drug therapy or vaccination therapy altering TGF-b
production and Tr differentiation might be applied to the
treatment of autoimmune diseases, transplant rejection and
various inflammatory conditions. However, in this case as
well, TGF-b’s dual personality raises the concern that it could
also induce the differentiation of inflammatory Th17 T cells,
and actually aggravate some autoimmune/inflammatory
diseases. Undoubtedly, future studies will yield valuable data
about all these therapies.
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