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Expression and localization of PDGF-B,
PDGF-D, and PDGF receptor in the kidney
of angiotensin ll-infused rat
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Lipid accumulation in the kidney is a marker of tissue damage and may play a role in the development of renal
injury. We have previously shown that long-term administration of angiotensin Il in rats causes increased
expression of transforming growth factor-f1, coupled with an accumulation of lipids in the tubular and vascular
wall cells in the kidney. In this study, we examine the regulation of expression of platelet-derived growth factor
(PDGF) and its receptor system and their co-localization with lipid deposits in the kidneys of angiotensin II-
infused rats. Real-time RT-PCR showed that expression of PDGF-B, PDGF-D, and PDGF receptor-f (PDGFR-p)
mRNA was increased by angiotensin Il infusion, and in situ hybridization showed the co-localization of these
mRNAs. Tubular cells that had increased PDGF-B mRNA expression were positive for lipid deposition and also
for cellular proliferation, which was indicated by the presence of proliferating cell nuclear antigen. By contrast,
in the kidneys of angiotensin ll-infused rats, apoptosis occurred in tubular cells that contained deposits of iron
but not lipids. The deposition of lipids and upregulation of PDGF-B, PDGF-D, and PDGFR-$ induced by
administration of angiotensin Il were all suppressed by the selective angiotensin Il type 1 (AT,) receptor
antagonist losartan, but not by the nonspecific vasodilator hydralazine. The findings that lipid accumulation,
upregulation of PDGF-B, PDGF-D, and PDGFR-g, and cellular proliferation were topologically associated and
regulated in an AT, receptor-dependent manner in the kidney of angiotensin ll-infused rats suggests that these

phenomena are related.
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Lipids may accumulate in nonadipose tissues such
as the arterial wall, heart, and liver, in certain
disease conditions,”” and the accumulated lipids
may exacerbate morphological and functional da-
mage in these tissues.?* Recent studies have shown
that deposition of lipids occurs also in the kidney of
the animal models of diabetes, obesity, and aging.”™®
Accumulation of triglycerides in the kidney is
reported in animal models of unilateral ureteral
obstruction,® glycerol-induced rhabdomyolysis, and
renal ischemia and subsequent reperfusion.'® The
finding that increasing renal triglyceride content by
transuding exogenous sterol regulatory element-
binding protein (SREBP)-1 resulted in upregulation
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of transforming growth factor (TGF)-f1 and an
increase in proteinuria,® suggests that, besides being
a marker of tissue damage, lipid accumulation in
renal cells may be involved in the development of
renal injury.

TGF-f and platelet-derived growth factor
(PDGF)"" are thought to play key roles in renal
damage in some disorders.’*'? Inhibition of angio-
tensin-converting enzyme activity and blockade of
the angiotensin II type 1 (AT,) receptor reduce the
expression of these genes.”"” whereas administra-
tion of angiotensin II upregulates their expres-
sion.’®'® Thus, activation of the renin—angiotensin
system or increased local concentration of angio-
tensin II may enhance renal damage by the upregu-
lation of these fibroproliferative genes in cortical
tubular epithelial cells.*®

We previously demonstrated that long-term ad-
ministration of angiotensin II caused marked de-
positions of iron*' and lipid** in the rat kidney.
Histological analysis showed that expression of
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TGF-f and production of superoxides were both
increased in renal cells with lipid deposition. We
therefore hypothesized that expression of PDGF and
its receptor system might be upregulated in the
lipid-positive cells in the kidneys of angiotensin
[O-infused animals. In this paper, we investigate
whether PDGF-B, PDGF-D, and PDGF receptor-f
(PDGFR-f) are induced in the kidneys of angiotensin
II-infused rats, and determine the localization of the
receptor and ligands by in situ hybridization.

Materials and methods
Animal Models

This study was performed in accordance with the
guidelines for animal experimentation approved by
the Animal Center for Biomedical Research, Faculty
of Medicine, University of Tokyo. Angiotensin II-
induced hypertension was induced in male Spra-
gue-Dawley rats (250-300g) by subcutaneous im-
plantation of an osmotic minipump (Alzet model
2001; Alza Pharmaceutical, Palo Alto, CA, USA) as
described previously.?® In brief, Val®>-Angiotensin II
and norepinephrine (Sigma) were infused at doses
of 0.7 mg/kg/day (~140ng/min) and 2.8 mg/kg/day,
respectively, for 7 days by subcutaneously im-
planted osmotic minipumps (Alza). These treat-
ments exerted hypertensive effects (angiotensin II,
192+5mmHg (n=12); norepinephrine, 192+4
mmHg (n=12), P<0.01 vs control rats, 131+ 3 mmHg
(n=6)). Systolic blood pressure was measured in
conscious rats by tail-cuff plethysmography (Ueda
Seisakusyo). In some experiments, the selective AT,
receptor antagonist losartan (25mg/kg/day) or the
nonspecific vasodilator hydralazine (15 mg/kg/day)
(Sigma) were given in the drinking water, 2 days
prior to pump implantation and throughout the
angiotensin II infusion (angiotensin II+ losartan,
126+5mmHg (n=7); angiotensin I+ hydralazine
126+ 3 mmHg (n=7)).

Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR)

Quantitative RT-PCR was performed as described
previously with LightCycler (Roche Diagnostics,
Basel, Switzerland).** Forward and reverse primers

were 5-CGGTGCAGGTGAGAAAGAT-3' and 5'-
CCGAGTTTAGGTGTCTTG-3/, respectively, for
PDGF-B, 5-TGTGCAGCCTAATGAGACT-3' and 5'-
AGGAGATGGTGGAAGAAGTG-3/, respectively, for
PDGFR-, and 5-GAGGAGTTGAAGCTGACCA-3'
and 5-GTCCAGGCTCAAACTTCAGTA-3', respec-
tively, for PDGF-D. Gene expression was normalized
to the endogenous control, glyceraldehyde-3-phos-
phate dehydrogenase mRNA, and expression of the
target gene expression in each sample was expressed
relative to that in controls.

Western Blot Analysis

Western blot analysis for SREBP-1 was performed as
described previously.?*?®

In Situ Hybridization and Immunohistochemistry

cDNAs for in situ hybridization were obtained
by RT-PCR. Forward and reverse primers were 5'-
ATTCCTGAGGAACTCTATGAAAT-3" and 5-AAGACT
GGCTTCTTTCTCACAAT-3', respectively, for PDGF-B,
5-GTCCTCAACATTTCGAGCACCTT-3' and 5-CAG
GCTGTAGACATAGTAAGTAT-3', respectively, for
PDGFR-f, and 5-ATCGGGACACTTTTGCGACT-3
and 5-CAGATCTTCTACAGTATCGAAT-3’, respec-
tively, for PDGF-D. In situ hybridization was
performed as described previously.?® Immunohisto-
chemistry was performed as described previously.*
Primary antibodies against PDGFR-§ (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and prolifer-
ating cell nuclear antigen (PCNA, DAKO Japan,
Kyoto, Japan) were used at a dilution of 1/200.

Deposition of Lipid and Iron

Oil red O staining was performed on 3 um sections
of unfixed, freshly frozen kidney samples. For
semiquantification of the lipid deposition, images
of each specimen stained with oil red O were taken
with an Olympus BX51 microscope and a DP12
digital camera system (Olympus, Tokyo, Japan). Five
images taken in the cortical regions of each sample
were analyzed. The ratio of the areas of lipid
deposition to the total tissue region area was
calculated by using the image analysis software

Figure 1 Localization and regulation of PDGF-B, PDGFR-f, and PDGF-D mRNA expression. (a—p) Results of in situ hybridization. (a—d)
Localization of PDGF-B mRNA. (a) Hybridization using the PDGF-B sense probe (background). (b—d) Hybridization using the PDGF-B
antisense probe in angiotensin II (Ang II)-infused (b, d) and control (c) rats. (e~h) Localization of PDGFR-f mRNA. (e) Hybridization using
the sense probe (background). (f~h) Hybridization using the PDGF-B antisense probe in Ang IlI-infused (f, h) and control (g) rats. (i-1)
Localization of PDGF-D mRNA. (i) Hybridization using the PDGF-D sense probe (background). (j-1) Hybridization using the PDGF-D
antisense probe in Ang II-infused (j, 1) and control (k) rats. (m—p) Co-localization of PDGF-B, PDGFR-f}, and PDGF-D is examined. (m-n)
and (o—p) are serially cut specimens. Specimens from Ang II-infused rats were stained with antisense probes that detect PDGF-B (m, o),
PDGFR-f (n), and PDGF-D (n). GM indicates glomerulus. Original magnifications, x 100 (a, b, e, f, i, j), and x 200 (c, d, g, h, k, 1-p). (q—s)
Real-time RT-PCR. A summary of the results on PDGF-B (q), PDGFR-f (r), and PDGF-D (s) mRNA are shown. Hyd, Los, and NE indicate
hydralazine, losartan, and norepinephrine, respectively. Numbers of experiments in each group are given in parentheses. *P<0.01 vs

untreated control.
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Adobe Photoshop. Iron staining was performed by
Prussian blue staining.

Determination of Apoptosis

Frozen sections (3 um thick) were fixed with in 4%
paraformaldehyde and examined by the terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP-
biotin nick end labeling (TUNEL) technique as
described previously.?”

Statistical Analysis

Data are expressed as the mean+s.e.m. We used
ANOVA followed by a multiple comparison test to
compare raw data, before expressing the results as a
percentage of the control value using the statistical
analysis software StatView version 5.0 (SAS Insti-
tute, NC, USA). A value of P<0.05 was considered
to be statistically significant.

Results

Expression and Localization of PDGF-B, PDGFR-§,
and PDGF-D mRNA

In situ hybridization revealed that the expression
of PDGF-B mRNA was increased in the kidneys of
angiotensin II-infused rats as compared to untreated
controls (Figure 1la—d). Similarly, expression of
PDGFR-f mRNA (Figure 1e-h) and PDGF-D mRNA
(Figure 1i-1) were increased after angiotensin II
infusion. Staining of serially cut specimens revealed
that the renal tubular cells, which showed increased
levels of PDGF-B mRNA expression, also showed
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increased levels of PDGFR-f mRNA (Figure 1m
and n) and PDGF-D mRNA (Figure 1o and p).
Quantitative RT-PCR showed that angiotensin II
infusion significantly increased mRNA expres-
sion of PDGF-B, PDGFR-8, and PDGF-D, which
could be suppressed by the AT, receptor blockade
by losartan, but not by the vasodilator hydralazine.
Norepinephrine, which exerted hypertensive
effects that were comparable to angiotensin II,
did not increase the expression of mRNA in
expression of either PDGF-B, PDGFR-f}, or PDGF-D
(Figure 1g-s).

Localization of PDGF-B, Iron, and Lipid Deposits

Staining of serially cut specimens showed that
majority of tubular cells that expressed increased
levels of PDGFR-fi and PDGF-B mRNA expression
did not contain iron deposits (Figure 2a—c). Im-
munohistochemistry showed that levels of PDGFR-f
protein were higher after infusion of angiotensin II,
but cells with increased PDGFR-f protein expres-
sion were again found to be negative for iron
deposition (Figure 2d-f). By contrast, staining of
serial frozen sections showed that PDGF-B mRNA
expression was intense in the tubular epithelial
(Figure 2g and h) and vascular wall cells (Figure 2i
and j) that were positive for lipid deposits. PCNA
was found to be positive in the tubular cells
that expressed increased levels of PDGF-B mRNA
(Figure 2k and 1) that was in accordance with
previous report.*®

By comparing four pairs of serially cut specimens
of the kidneys of angiotensin II-infused rats, 84+6
and 6+2% of the cells with increased PDGF-B
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Figure 2 Localization of PDGF-B, PDGFR-$, iron, and lipids. (a—f, k, 1) Formalin-fixed paraffin-embedded specimens. (g—j) Unfixed

frozen specimens. (a, b, h, j, k) In situ hybridization. (c
(d, e) and PCNA (1). (g

, f) Prussian blue staining. (d, e, 1) Inmunohistochemical staining for PDGFR-f
, 1) Oil red O staining. (a—c) Serial sections showing the localization of PDGFR-$ mRNA (a), PDGF-B mRNA (b), and

iron (c). Cells positive for PDGF-B and PDGFR- mRNA expression did not co-localize with iron (arrowheads in a—c), with a few
exceptions (arrows in a—c) F. Localization of PDGFR-f protein and iron. Only very weak PDGFR-f protein expression is observed in the
control kidney (d). Serial sections show the localization of PDGFR-f protein (e) and iron (f) in the kidney of angiotensin (Ang) II-infused
rat. (g—j) Co-localization of lipid deposition and PDGF-B mRNA. Tubular cells that are positive for lipid deposition (g) are also positive for
PDGF-B mRNA (h) in the kidney of Ang II-infused rat (arrowheads in g, h). Some vascular wall cells are also positive both for lipid
deposition (i) and for PDGF-B mRNA (j). (k, 1) Co-localization of PDGF-B mRNA (k) and PCNA-positivity (1) in the kidney of Ang
[I-infused rat. GM and A indicate glomerulus and intrarenal artery, respectively. Original magnifications, x 200 (a-h, k, 1) and x 400 (i, j).

Laboratory Investigation (2006) 86, 1285—-1292
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Figure 3 Lipid deposition and cellular proliferation and apoptosis. Unfixed frozen tissue specimens from the kidney of angiotensin
(Ang) II-infused rats are used to demonstrate the co-localization, or non-co-localization, of cellular proliferation, apoptosis, lipid
deposition, and iron deposition. (a, b) Staining of serial sections shows that tubular cells that are positive for PCNA (a, arrows) are also
positive for oil red O staining (b, arrows). (¢, d) Staining of serial sections shows that perivascular (PV) cells that are positive for PCNA (c)
are also positive for oil red O staining (d). (e—g) Staining of serial sections shows that TUNEL-positive apoptotic cells (e) are negative for
lipid staining (f), but positive for iron staining (g). (h—j) Higher magnification also shows the tubular cells that are positive for TUNEL
staining (h, arrows) are negative for lipid deposition (i), whereas they are positive for iron staining (j, arrows). GM and A indicate
glomerulus and intrarenal artery, respectively. Original magnification, x 200 (a—d, h—j) and x 100 (e-g).

mRNA expression were found to be positive for
deposition of lipid and iron, respectively.

Cellular Proliferation, Apoptosis, and Deposition of
Lipids and Iron

We then investigated whether PCNA-positive cells
were also positive for accumulation of lipids.
Tubular cells that were positive for PCNA staining
were found to accumulate lipids (Figure 3a and b,
arrows). Similarly, deposits of lipids were observed
in the perivascular cells that were positive for
PCNA (Figure 3c and d). By contrast, TUNEL-
positive tubular cells did not contain lipid deposits,
but instead were positive for iron deposition
(Figure 3e—j).

Effects of Various Pressor and Antipressor Agents on
Lipid Deposition and Regulation of Expression of
Lipid Metabolism-Related Genes

We next determined the effects of the pressor and
antipressor agents, which had been used to inves-
tigate the regulation of PDGF-B, PDGF-D, and
PDGFR-$ (Figure 1) on angiotensin II-induced
accumulation of lipids and wupregulation lipid
metabolism-related genes. Angiotensin II-induced
lipid accumulation could be suppressed by losartan,
but not by hydralazine (Figure 4a—d). Administra-
tion of norepinephrine did not result in lipid
deposition in the kidney (Figure 4e). The ratio of
the areas of lipid deposition to the total tissue
region area in each group were as follows (n=4
in each group): control, 0.1+0.0%; angiotensin II,

6.1+0.9% (P<0.01 vs control); angiotensin II+
hydralazine, 5.0+1.4% (P<0.01 vs control); angio-
tensin II +losartan, 0.3+0.3% (NS vs control); and
norepinephrine, 0.3+0.2% (NS vs control).

The angiotensin II-induced upregulation of pro-
tein expression of SREBP-1 (Figure 4f and g) was
inhibited by losartan, but not by hydralazine.
Angiotensin II-induced upregulation of mRNA ex-
pression of FAS and LDL-R were also suppressed by
losartan, but not by hydralazine (Figure 4h and i).
Norepinephrine treatment did not increase expres-
sion of SREBP-1 (data not shown), FAS, or LDL-R
(Figure 4h and i). Expression of HMG-CoA-R was
not significantly altered by any of these treatments
(Figure 4]J).

Discussion

In the present study, we demonstrated that expres-
sion of PDGF-B, PDGF-D, and PDGFR- mRNA was
increased in the kidney of rats that were made
hypertensive by angiotensin II but not by norepi-
nephrine. In situ hybridization showed the co-
localization of mRNA expression of these genes.
Histological analysis showed that only a small
fraction of PDGF-B mRNA signals co-localized with
iron deposits, but a substantial fraction co-localized
with lipid droplets. In the kidney of angiotensin II-
infused rat, cells with increased PDGF-B mRNA
expression and in those with lipid accumulation
were also PCNA positive. These data collectively
suggest that lipid deposition, PDGF, and renal cell
proliferation may be related in the kidney of the
angiotensin II-induced hypertensive rat.

Laboratory Investigation (2006) 86, 1285—1292
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Figure 4 Effects of pressor and antipressor agents on lipid deposition, protein expression of SREBP-1, and mRNA expression of FAS,
LDL receptor, and HMG CoA reductase. (a—e) Oil red O staining of the sections from untreated rats (a), rats treated with angiotensin (Ang)
II (b), Ang II plus hydralazine (Hyd) (c), Ang II plus losartan (Los) (d), and norepinephrine (NE) (e). Original magnification, x 200. (f, g)
Protein expression of SREBP-1. Representative Western blot analysis (f) and summary of data (n=>5-7 in each group) (g). (h—j) Summary
of data of real-time RT-PCR (N=6 in each group) for the expression of fatty acid synthase (FAS) (h), LDL receptor (LDL-R) (i), and
HMG-CoA reductase (HMG-CoA-R) (j) mRNA. *P<0.05 vs untreated control.

It has been previously shown by Johnson et al*®
that administration of angiotensin II induces
PDGF-B expression in the renal tubular cells. In
the present study, we showed that angiotensin II
infusion induced upregulation of PDGF-B and
PDGFR-$ mRNA in the kidney, and this could be
suppressed by the AT, receptor antagonist losartan,
but not by the vasodilator hydralazine. These
findings suggest that angiotensin II-upregulated

Laboratory Investigation (2006) 86, 1285—-1292

expression of these genes by an AT, receptor-
dependent mechanism, an idea that is further
supported by our finding that norepinephrine did
not cause upregulation of these genes.

We also demonstrated that mRNA expression of
PDGF-D, a newly discovered member of PDGF
family that mediates renal cell proliferation, also
showed similar pattern of regulation by pressor and
antipressor agents. The distribution pattern of



PDGF-D mRNA was reported to be closely similar
to that of PDGFR-f in murine renal fibrosis induced
by unilateral ureteral obstruction.? In the current
study, we showed the co-localization of mRNA
expression of PDGF-D, PDGF-B, and PDGFR-f
(Figure 1m—p) in the kidney of the angiotensin II-
induced rat.

We previously found that long-term administra-
tion of angiotensin Il resulted in a marked deposition
of iron** and lipid®* in the kidney. Although several
previous studies have shown deposition of iron®°
and lipid>®®®! in other animal models, the physio-
logical importance of the renal iron and lipid
deposition has not been well established. Sun et al
have recently reported that introducing exogenous
SREBP-1 gene to the kidney resulted not only in the
renal lipid deposition, but also in increased albumi-
nuria and upregulation of TGF-f1 expression, sug-
gesting that alterations in lipid metabolism in the
kidney may have a role in renal function and
regulation of gene expression. We also found the
topological association between TGF-$1 mRNA ex-
pression and lipid deposition, but not iron deposi-
tion, in the kidney of angiotensin II-infused rat.*®*?
As both PDGF and TGF-$ may to play a modulatory
role in the progression of renal injury in certain
diseased condition,*” these previous findings lead us
to investigate the regulation of PDGF-B, as well as
PDGF-D and PGDFR-f, and their histological locali-
zation in the kidney of angiotensin II-infused rats.

In a previous study, we showed that angiotensin II
infusion induced renal cellular proliferation, which
could be suppressed by losartan, but not hydrala-
zine.?” In the current study, in addition to the
topological association between PDGF-B, PCNA,
and lipid deposition, mRNA expression of PDGF-
B/PDGF-D (Figure 1q and s) and area of lipid
deposition (Figure 4a—e) were regulated by an AT,
receptor-dependent and pressor-independent man-
ner. As PDGF-D, as well as PDGF-B, may promote
renal cellular proliferation when upregulated,®
these finding might suggest that altered lipid home-
ostasis is an upstream phenomenon in the PDGF-B/
PDGF-D-induced renal cellular proliferation in the
kidneys of angiotensin II-treated rats. This scenario
is supported by the finding by a previous in vitro
study that showed that simulation of the renal cells
with triglyceride-rich lipoproteins increased the
secretion of PDGF and TGF-f from these cells and
promote their proliferation.?* In contrast to prolif-
eration, TUNEL-positive apoptosis was found in the
cells with iron deposition, but not in those with
lipid deposition. Previous studies showed that heme
or iron may exacerbate renal cell apoptosis, pre-
sumably, in part, by iron-induced oxidative
stress.?®*® Again, a causal or resultant relationship
between iron deposition and renal cell apoptosis
could not be determined in the current study; it will
be pursued in future studies.

Accumulation of lipid droplets in glomerular and
renal tubular cells has been reported in an animal
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model of diabetes,®® which is postulated to mod-

ulate the expression of fibrogenesis-related genes
and proteinuria.® Importantly, analysis of renal
biopsy specimens from patients with kidney dis-
eases showed that deposition of lipid,*” as well as
iron,*® may not be uncommon. The pathophysiolo-
gical roles of lipid deposition in the kidney and its
possible association with the renin—angiotensin
system need further investigation.

In conclusion, long-term administration of angio-
tensin II increased the expression of PDGF-B, PDGF-
D, and PDGFR-f mRNA in the rat kidney. It was
shown histologically that cells with increased
PDGF-B mRNA expression contained lipid deposits.
In addition, cellular proliferation was observed in
lipid-positive cells and PDGF-B-positive cells.
These data collectively suggest the possible relation-
ship between altered lipid metabolism, upregulation
of PDGF-B/PDGF-D, and cellular proliferation in the
kidney of hypertensive animal models of angio-
tensin II infusion.
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