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Bacterial products that are normally present in the lumen of the colon, such as N-formylated peptides and
muramyl-dipeptide, are important for inducing the development of mucosal inflammation. The intestinal
dipeptide transporter, hPepT1, which is expressed in inflamed but not in noninflamed colonic epithelial cells,
mediates the transport of these bacterial products into the cytosol of colonic epithelial cells. The small bacterial
peptides subsequently induce an inflammatory response, including the induction of MHC class I molecules
expression and cytokines secretion, via the activation of nucleotide-binding site and leucine-rich repeat (NBS-
LRR) proteins, for example NOD2, and activation of NF-jB. Subsequent secretion of chemoattractants by
colonic epithelial cells induces the movement of neutrophils through the underlying matrix, as well as across
the epithelium. These bacterial products can also reach the lamina propria through the paracellular pathway
and across the basolateral membrane of epithelial cells. As a consequence, small formylated peptides can
interact directly with immune cells through specific membrane receptors. Since immune cells, including
macrophages, also express hPepT1, they can transport small bacterial peptides into the cytosol where these
may interact with the NBS-LRR family of intracellular receptors. As in intestinal epithelial cells, the presence of
these small bacterial peptides in immune cells may trigger immune response activation.
Laboratory Investigation (2006) 86, 538–546. doi:10.1038/labinvest.3700423; published online 1 May 2006

Keywords: hPepT1; bacterial peptides; epithelial cells; immune cells; inflammatory bowel disease

Intestinal inflammation is characterized histologi-
cally by epithelial disruption, leading to loss of
barrier function, and recruitment of immune cells,
especially neutrophils (PMNs), which adhere to and
migrate across intestinal epithelia. Although incom-
pletely understood, aberrant interactions between
environmental and immunological factors are
thought to be critical to the initiation of intestinal
inflammation. For example, normal, nonpathogenic
bacterial flora plays a key role in the development
of intestinal inflammation.1–5 Bacteria, including
Escherichia coli, release chemotactic substances,
such as the N-formylated tripeptideN-formylmethionyl-
leucyl-phenylalanine (fMLP), which specifically
interact with and recruit immune cells, especially
neutrophils, to sites of inflammation.6,7 fMLP is the
major N-formylated peptide of the human colonic
lumen,7,8 and the total amount of N-formylated
peptide in the human colon can reach 10�7M,8

a concentration that maximally stimulates PMN
migration in vitro.9 The concentrations of N-formyl
peptides in the small intestine are lower than those
in the colon,7,8,10 in parallel with the lower numbers
of prokaryotes. Other bacterial dipeptides in the
colonic lumen include muramyl-dipeptide (MDP,
Ac-muramyl-Ala-Glu), which is present at micro-
molar concentrations10 and was recently identified
as a specific activating ligand of the intracellular
(nucleotide-binding site and leucine-rich repeat)
NBS-LRR family protein, NOD2/CARD15.10–12 It is
unclear, however, how di- and tripeptides such as
fMLP and MDP gain access to the intracellular
compartment of the epithelial cells and/or immune
system cells located within the lamina propria.

Structure of hPepT1

One normal transport function of gut epithelial cells
is the absorption of small peptides from the diet via
an apical membrane peptide transporter. The apical
membrane protein that mediates this peptide trans-
port activity,13 human PepT1 (hPepT1) cotransports
peptides with Hþ14 and has a broad specificity
that includes many di- and tripeptides as well as
peptide-derived drugs.15–20 Functional expression of
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hPepT1 in Xenopus laevis oocytes induces Hþ -
dependent peptide transport activity, thus recapitu-
lating the peptide transporting activity observed in
natural gut epithelia.13,21 The hPepT1 protein ex-
pressed in polarized intestinal epithelial cells,
which have an acidic microclimate, functions
optimally at lower extracellular pH. hPepT1 is
appropriately expressed on the apical membrane of
the human gut epithelial cell line, Caco2,22,23 which
can be used as an in vitro model for biological
analyses of this transporter. The cDNA encoding this
human oligopeptide transporter is 2263 base pairs
(bp) long, with an open reading frame of 2127 bp and
encodes a 708 amino-acid protein with a predicted
molecular size of 78 kDa.13 The hydropathy plot of
hPepT1 suggests there are 12 putative membrane-
spanning domains.13,18 In vivo and in vitro studies
have shown that hPepT1 transports di- and tripep-
tides, but not free amino acids or peptides with more
than three amino-acid residues.15–20 These peptide
substrates vary greatly in net charge, solubility, and
molecular weights, from 96.2Da (di-Gly) to 522.6Da
(tri-Trp) and include the bacterial tri-peptide fMLP.9

hPepT1 is expressed in normal small
intestine but not in normal colon

PepT1 is primarily expressed in brush border
membranes of enterocytes in the small intestine, in
proximal tubular cells of the S1 segment of the
kidney, and in bile duct epithelial cells.16,17,24–30

Within the small intestine, PepT1 has a differential
pattern of expression. Along the vertical axis, PepT1
is most abundant at the villous tip and expression
decreases towards the crypt.25,31,32 Along the long-
itudinal axis, the density of PepT1 increases from
duodenum to ileum.33 Expression of PepT1 mRNA
or protein is marginal34 or not detected25,30,35 in the
colon, but is transiently expressed in normal rat
colon during the first few days after birth.36 Under
these conditions, there is little PepT1-mediated
transport of bacterial products, including fMLP
and MDP. Although hPepT1 is expressed in the
small intestine-like cell line Caco2-BBE but not in
the colonic-like cell line HT29-Cl.19A.35

Intestinal epithelial hPepT1 transports the
bacterial di- and tripeptides MDP and
fMLP

fMLP and MDP are transported across the apical
plasma membrane of Caco2-BBE cells.9,10 fMLP is
also transported into Xenopus oocytes expressing
hPepT1, and fMLP transport in Caco2-BBE cells and
Xenopus oocytes is competitively inhibited by
known hPepT1 dipeptide substrates, but not by free
amino acids.9 There is little terminal hydrolysis of a
variety of oligopeptides at the brush border, with
about 90% of each transported into the cytosol as
intact di- or tripeptides.15 fMLP exit across the

basolateral membranes is mediated by a distinct
transport system which is likely the rate-limiting
step in transcellular transport.9 Therefore, intestinal
epithelial cells expressing hPepT1 may accumulate
significant quantities of bacterial peptides in the
cytosol if these peptides are present at significant
concentrations in the lumen.

hPepT1 expression is induced in colonic
epithelial cells during inflammation

Although PepT1 is not normally expressed in
colonic epithelial cells,25,34,35 we detected hPepT1
expression in epithelial cells of chronically in-
flamed colon.35 Immunohistochemical experiments
showed that hPepT1 protein was expressed in colon
from patients with ulcerative colitis or Crohn’s
disease (Merlin et al;35 Figure 1). As in normal small
intestine epithelial cells, expression was primarily
at the apical membrane of colonic epithelial cells
(Merlin et al;35 Figure 1), suggesting that hPepT1
expression can be induced in colonic cells under
inflammatory conditions. Expression of hPepT1 has
also been found to be up-regulated in the colonic
mucosa of patients with short-bowel syndrome
following surgical resection of the proximal small
intestine, again indicating that hPepT1 expression is
induced in colonic epithelial cells under pathologi-
cal conditions.34 The finding that hPepT1 mRNA
and protein expression is induced in colonic
epithelial cells under inflammatory conditions
suggests that specific transcriptional regulation by
signaling pathway(s) may be activated. Furthermore,
these observations suggest that inflamed, but not
noninflamed, colonic epithelial cells may be able to
transport bacterial products such as fMLP and MDP,
which are present in the colonic lumen.7,8,10

Figure 1 Chronic colitis is associated with hPepT1 expression in
human colon. Frozen sections of mucosa of chronic ulcerative
colitis (chronic active colitis) were stained with anti-hPepT1
antibody. Sections were counterstained for nuclei with methyl
green. hPepT1 staining was localized to the apical membrane of
colonic epithelial cells.35 In addition, hPepT1 staining was also
detected in the immune cells present in the lamina propria.
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Colonic hPepT1 expression during
inflammation is regulated by cytokines

PepT1 expression is precisely regulated at the
protein level. For example, interferon-g (IFNg),
which is present at high levels in inflammatory
bowel disease (IBD) tissues, causes a phenotypic
shift in enterocytes, preparing them for a role in host
defense.37–40 We and others have found that IFNg
increases hPepT1-mediated uptake of di- and tri-
peptides, including fMLP, by Caco2-BBE cells,
without affecting hPepT1 mRNA content.41,42 Low
concentrations of IFNg have been found to increase
intracellular pH, enhancing the Hþ electrochemical
gradient across the apical plasma membrane in
Caco2-BBE monolayers,42 which, in turn, is respon-
sible for the increase in hPepT1-mediated transport
events.14 Other in vivo and in vitro studies have
demonstrated that the short-term effects of leptin, as
well as high concentrations of IFNg and tumor
necrosis factor a (TNFa) that stimulate dipeptide
transport, result from increased trafficking of PepT1
from intracellular pools to the apical membrane.42,43

Interestingly, another cytokine, interleukin-1b (IL-
1b), has been shown to increase the amounts of
PepT1 mRNA and protein in the murine proximal
and distal colon without increasing the functional
activity of PepT1.43 This suggests that IL-1b-induced
PepT1 is not expressed on the cell surface, but is
retained in an intracellular compartment.42 Under
inflammatory conditions, hPepT1 expression in
colonic epithelial cells is likely induced at the
transcriptional level, since little or no hPepT1
expression is observed in noninflammatory colonic
epithelial cells.34,35 Consistent with this, recent
cloning of the 50-flanking region of the hPepT1 gene
identified several GC-rich sites that may bind the
transcription factor Sp1, suggesting that Sp1 may
function as a basal transcriptional regulator of the
hPepT1 gene.44 This work also identified additional
cis elements and trans factors involved in the
regulation of hPepT1 transcription, which may
relate to the upregulation of dipeptide transport
activity as a result of PepT1 gene transcriptional
activation by specific dietary amino acids and
dipeptides in rats45 and by media supplementation
in Caco2 cells.46,47 Thus, one might hypothesize that
bacterial peptides increase PepT1 in transcriptional
activation and that the resulting epithelial PepT1
expression perpetuates intestinal inflammation.
This mechanism, however, is not likely to be
responsible for the initiation of PepT1 expression
in colonic epithelium. We recently demonstrated
that long-term treatment of Caco2-BBE cells with
leptin, a proinflammatory cytokine involved in
IBD,48 increases hPepT1 expression and activity
via activation of its promoter.49 We also observed
that inflamed human colonic epithelial cells of
individuals with ulcerative colitis secrete leptin
into the intestinal lumen, similar to that observed
in vitro by IFNg-treated Caco2-BBE cells.48 Therefore,

upregulation of hPepT1 activity by leptin may be
directly related to IBD pathogenesis.

PepT1-mediated fMLP transport induces
intestinal inflammation in vitro and in vivo

fMLP is a neutrophil chemoattractant, an activity
mediated through the interactions of fMLP with
specific G protein-coupled receptors on neutrophil
plasma membranes.6,7 This, in turn, leads to the
transepithelial migration of stimulated neutrophils.
It was originally thought that this recruitment of
neutrophils was induced by a paracellular gradient
of fMLP created by its passive diffusion across tight
junctions and into paracellular spaces. However, the
discovery of hPepT1-mediated transport of fMLP
provides new perspectives for mechanisms by
which fMLP could reach neutrophils. For example,
transcellular oligopeptides transport via apical
hPepT1 and a separate basolateral di/tripeptide
transporter9,22,50,51 allows fMLP to be released into
the lamina propria, where it can interact with
neutrophils and activate transepithelial migration.
In addition, the intracellular accumulation of N-
formyl peptides may biologically influence the
interactions of neutrophils with epithelial mono-
layers. For example, in Caco2-BBE cells, inhibition
of hPepT1-mediated uptake of fMLP attenuates the
fMLP-driven transepithelial migration of neutro-
phils by 50%.9 Conversely, enhancing hPepT1-
mediated epithelial absorption of fMLP increases
the transepithelial migration of neutrophils.9 The
most straightforward interpretation of these observa-
tions is that active transepithelial transport of fMLP
favorably modifies the transepithelial gradient of the
chemoattractant, leading to a more efficient move-
ment of neutrophils across epithelial cells. However,
some data also suggest that intracellular uptake of N-
formyl peptides may trigger rapid signals that lead to
modifications of the basolateral membranes with
which neutrophils interact during transepithelial
migration.52 In vivo analysis in rat jejunum showed
initial evidence of inflammation within 4h of
perfusion with 10 mM fMLP, including epithelial
exfoliation, blunted and broadened villi, interstitial
edema, vessel dilation, and increased numbers of
inflammatory cells (lymphocytes and polynuclear
cells) in the lamina propria.52 By contrast, the colon
showed no evidence of fMLP-induced inflamma-
tion,52 consistent with the observation that PepT1 is
expressed in the small intestine but not in the colon
of rats25 and humans.35 Moreover, the ability of
50mM Gly-Gly to completely inhibit fMLP-induced
inflammation in the jejunum confirms the critical
role of PepT1 in this model. Thus, colonocytes,
which are exposed to high levels of luminal fMLP,7

are insensitive to fMLP, while small intestinal
enterocytes can respond to fMLP but are normally
exposed to only low luminal concentrations, con-
sistent with lower bacterial load. Thus, some disease
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states, such as bacterial overgrowth, may allow
small intestinal fMLP concentrations to induce
PepT1-mediated inflammation while in the colon,
expression of hPepT1 in chronic colitis35 may allow
hPepT1-mediated transport to sustain the inflam-
matory process (Table 1).

Intracellular accumulation of bacterial
products such as fMLP and MDP leads
to the activation of inflammatory
responses by intestinal epithelial cells

Intracellular accumulation of bacterial products
such as fMLP and MDP may trigger intracellular
signals that lead to the initiation of intestinal
inflammatory responses.35 For example, we found
that uptake of fMLP by colonic epithelial cells led to
the induction of MHC class I molecules expres-
sion.35 This effect is specific for N-formylated
peptides, since Gly–Leu did not alter MHC class I
expression, and is mediated through hPepT1 trans-
port, since increased MHC class I expression was
observed in HT29-Cl.19A cells engineered to ex-
press hPepT1 (HT29-Cl.19A/hPepT1) but not in
HT29-Cl.19A cells without hPepT1 expression
(HT29-Cl.19A/GFP).35 It is tempting to hypothesize
that these newly synthesized MHC class I molecules
can be used for antigenic presentation of bacterial
products, including fMLP, especially since, in mice,
MHC class I molecules including H-2M3a are able to
present fMLP on the cell surface.53–60 Upon induc-
tion of hPepT1 expression, colonic epithelial cells
would then be able to act as sensors for the presence
of bacteria, signaling ‘bacterial invasion’ to immune
cells, which can then eliminate the bacteria. Trans-
port of fMLP in Caco2-BBE cells has been found to
stimulate NF-kB and AP-1 activities, which may
lead to the activation of inflammatory responses by
intestinal epithelial cells.52 In addition, MDP in-
duces NF-kB activation in Caco2-BBE cells, as
observed by its nuclear translocation and by the
secretion of the chemokines IL-8 and monocyte
chemoattractant protein-1 (MCP-1).10 The MDP-

induced IL-8 secretion could be abolished by either
NOD2 or hPepT1 siRNA,10 suggesting that intracel-
lular accumulation of MDP is mediated by hPepT1
and that the MDP/NOD2 interaction induces IL-8
secretion by intestinal epithelial cells.10–12 Interest-
ingly, mucosal IL-8 and MCP-1 are highly expressed
in regions of active IBD (for a review, see MacDer-
mott61). As IL-8 and MCP-1 are chemoattractants for
neutrophils and monocytes, respectively,62 the find-
ing that hPepT1-mediated transport of bacterial
oligopeptides into intestinal epithelial cells stimu-
lates IL-8 secretion10 and increases neutrophil
transepithelial migration9 indicates that hPepT1-
mediated transport of luminal bacterial products
into intestinal epithelial cells induces a cascade of
signaling events. Among these signals, NF-kB is
activated through the binding of the transported
bacterial oligopeptide to NOD2. Once activated, NF-
kB can then stimulate expression and secretion of
cytokines, including IL-8 and MIP-1, which may
subsequently interact with and recruit immune
cells.

hPepT1 expression by immune cells

Immune cells, such as macrophages, are in close
contact with the lamina propria of the small
intestine,63,64 where low concentrations of small
bacterial-derived peptides are present. Under nor-
mal conditions, this constant low concentration of
fMLP activates a physiological baseline level of
inflammation.65,66 During inflammation, however,
colonic tissues express PepT1 (Merlin et al35 and
Buyse et al;41 Figure 1), which participates in the
active transport of fMLP from the lumen to the
lamina propria where immune cells are located and
would be expected to participate in immune cell
activation. However, as macrophages expressing
triggering receptor expressed on myeloid cells-1
(TREM-1), a receptor involved in inflammatory
responses, are underrepresented in the human
intestine,67 other receptor(s) must be involved in
macrophage activation. Interestingly, we noted that,

Table 1 Correlation in the presence of the major players of PepT1-mediated intestinal inflammation

PepT1
activity

NOD2
expression

Normal small
intestine

Normal colon Inflamed colon

IFNg Increased41,42 Increased87 Low
concentration37–40

Low
concentration37–40

High
concentration37–40

TNFa Increased42 Increased85,87 Low
concentration113,114

Low
concentration113,114

High
concentration113,114

Leptin Increased43,49 ? Low
concentration48

Low
concentration48

High
concentration48

PepT1 — — High
expression25,26,29,35

Low
expression25,30,34,35

Expression25,35

Bacterial di/tripeptides
(fMLP, MDP)

— — Not abundant8,10 Abundant8,10 Abundant8,10

NOD2 — — Expressed65–67 Expressed65–67 Expressed65–67
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within the lamina propria of inflamed colonic
tissues, some cells stain positively for hPepT1
(Figure 1). To further investigate hPepT1 expression
by human immune cells we assessed hPepT1
expression in cell lysates from human peripheral
blood mononuclear cells and macrophages and the
human monocytic cell line KG-1.68 We also cloned
hPepT1 cDNA from KG-1 cells (Y Yan and D Merlin,
GenBank Accession No. AY634368) and found that
it was 100% homologous to the published coding
sequence of hPepT1 in Caco2 cells (GenBank
accession No. AF043233). This hPepT1 expressed
on human macrophages appears to be functional,
since it mediates the transport of di- and tripeptides,
including fMLP.68 Interestingly, the optimal activity
of hPepT1 was seen at pH 7.2, the pH of the immune
cell environment. These results suggest that bacter-
ial di- and tripeptides such as MDP and fMLP may
be taken up by the immune cells that reside in the
lamina propria of the intestine.

Potential role of by hPepT1-mediated
transport of fMLP/MDP in immune cell
activation

Induction of an immune response requires recogni-
tion of microorganisms by host receptors, such as
fMLP receptors or toll-like receptors (TLRs), ex-
pressed on immune system cells.66,69–72 Alternative
receptors from the family of the NBS-LRR proteins,
such as NOD2, are also able to detect specific
bacterial compounds, such as MDP, and induce
inflammatory responses.65,73–79 Dysregulation of
this recognition event due to mutations in genes
encoding these receptors is involved in numerous
autoinflammatory disorders,65 including Crohn’s
disease.65,80–84 Expression of hPepT1 by antigen
presenting cells may therefore have important
physiological relevance. For example, bacterial
peptides such as fMLP or MDP, which are trans-
ported by hPepT1,9,10,35 could be taken up by

Figure 2 Summary/model of involvement of hPepT1 in IBD. This figure depicts a model for the involvement of hPepT1 in IBD, based on
the literature reviewed here. Bacterial products, such as fMLP and MDP, are normally present in the intestinal lumen. Intestinal hPepT1,
which is expressed in inflamed but not in noninflamed colonic epithelial cells, mediates the transport of these bacterial products into the
cytosol. The uptake into the cytosol of these small bacterial peptides then induces an inflammatory response at the level of the intestinal
epithelial cell. This response includes the induction of MHC I expression and cytokine secretion via the activation of NBS-LRR proteins
(eg NOD2) and the subsequent activation of NF-kB. Secreted cytokines then recruit immune system cells such as neutrophils to the site of
inflammation. In addition, fMLP can interact directly with immune cells. Indeed, fMLP can reach the lamina propria through the
paracellular pathway, since tight junctions are permeable to fMLP. This leakage of fMLP will be enhanced in patients with IBD, since the
intestinal epithelial barrier is disrupted. In addition, there may be an efflux of fMLP across the basolateral membrane via a basolateral
peptide transporter.9,22,50,51 As a consequence, fMLP and other small formylated peptides can bind to specific membrane receptors on
immune cells. Since immune cells including macrophages also express PepT1, they can take up small bacterial peptides, which can
interact with the NBS-LRR family of intracellular receptors (eg NOD2). As described in intestinal epithelial cells, the presence of these
small bacterial peptides in immune system cells may participate in the induction of an immune response, through the NBS-LRR proteins
that are involved in intracellular recognition of microbes and their products.65,73–79 (Power Point slide series of figure 2 is available online
as supplementary information on the Laboratory Investigation website: http//www.nature.com/labinvest.)
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macrophages, which could, in turn, participate in
the intestinal mucosal immune response. We pro-
pose that, during intestinal inflammation, luminal-
derived bacterial products, such as fMLP, may be
taken up by macrophages present in the lamina
propria. These bacterial products may participate in
the activation of an immune response by antigen
presentation via MHC class I or II molecules,53–60 or
may be recognized by intracellular receptors such as
NOD2 (Figure 2), which is expressed in myeloid
cells71,73 and upregulated by proinflammatory
mediators.85–87

Perspectives

The findings reviewed above regarding the involve-
ment of hPepT1 in IBD open new prospects in the
treatment of this disease. It is interesting that this
transporter is resistant to intestinal injury encoun-
tered in pathological states. Since colonic PepT1 is
upregulated during intestinal inflammation, its
transport function can be considered a tool in the
development of anti-inflammatory therapies.
Furthermore, the importance of hPepT1 expression
by immune cells during intestinal inflammatory
states should be evaluated. Therapeutically, it may
be useful to develop anti-inflammatory drugs, the
effect of which can be mediated by colonic hPepT1.
Examples of drugs and prodrugs that act as
substrates for PepT1 include b-lactam antibiotics,
cephalosporins, ACE-inhibitors, L-valine ester pro-
drugs such as valacyclovir, renin and thrombin
inhibitors, bestatin, and the valine ester prodrugs
of aciclovir and ganciclovir.88–106 It would be inter-
esting to investigate hPepT1-mediated transport of
anti-inflammatory di- and tripeptides. For example,
the tripeptide KPV was recently shown to have anti-
inflammatory activities. Although its underlying
mechanisms are not known, the ability of KPV to
inhibit NF-kB activation suggests that it may act by
inhibiting the synthesis of pro-inflammatory cyto-
kines.107–112 These peptides may therefore be good
candidates for mediators of anti-inflammatory
effects, by acting through PepT1 expressed
in inflamed colonic epithelial and immune cells.
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