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Despite low sensitivity (around 60%), cytomorphologic examination of urine specimens represents the standard
procedure in the diagnosis and follow-up of bladder cancer. Although color is information-rich, morphologic
diagnoses are rendered almost exclusively on the basis of spatial information. We hypothesized that
quantitative assessment of color (more precisely, of spectral properties) using liquid crystal-based spectral
fractionation, combined with genetic algorithm-based spatial analysis, can improve the accuracy of traditional
cytologic examination. Images of various cytological specimens were collected every 10nm from 400 to 700nm
to create an image stack. The resulting data sets were analyzed using the Los Alamos-developed GENetic
Imagery Exploitation (GENIE) package, a hybrid genetic algorithm that segments (classifies) images using
automatically ‘learned’ spatio-spectral features. In an evolutionary fashion, GENIE generates a series of
algorithms or ‘chromosomes’, keeping the one with best fitness with respect to a user-defined training set.
First, we tested the system to determine if it could recognize malignant cells using artificial cytology specimens
constructed to completely avoid the requirement for human interpretation. GENIE was able to differentiate
malignant from benign cells and to estimate their relative proportions in controlled mixtures. We then tested the
system on routine cytology specimens. When targeted to detect malignant urothelial cells in cytology
specimens, GENIE showed a combined sensitivity and specificity of 85 and 95%, in samples drawn from two
separate institutions over a span of 4 years. When trained on cases initially diagnosed as ‘atypical’ but with
unequivocal follow-up by biopsy, surgical specimen or cytology, GENIE showed efficiency superior to the
cytopathologist with respect to predicting the follow-up result in a cohort of 85 cases. We believe that, in future,
this type of methodology could be used as an ancillary test in cytopathology, in a manner analogous to
immunostaining, in those situations when a definitive diagnosis cannot be rendered based solely on the
morphology.
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Urothelial carcinoma is diagnosed and followed by
cytological evaluation of voided urine and bladder
washings.1,2 The sensitivity of these tests is moder-
ate, ranging between 60 and 80%.3,4 Low-grade
tumors offer an even greater challenge to the
cytopathologist,5 resulting in the use of such
terminology as ‘atypical urothelial cells’, leading to
suboptimal patient management.6

Morphologic diagnoses in cytopathology are pri-
marily driven by spatial relationships, while color-

based information is relegated to a very minor role.
This may be because the human eye has limited
spectral resolution, viewing the world in broad,
overlapping spectral bands of red, green and blue. If
the spectral properties of cytological specimens are
important, this fact can only be assessed using
devices capable of imaging with spectral precision.
This excludes conventional red–green–blue (RGB)
cameras, which have no more spectral resolving
power than the human visual system they are
designed to emulate. Spectral imaging, on the other
hand, is a relatively novel technique capable of
quantitatively measuring optical spectra on a pixel-
by-pixel basis, and therefore capturing differences
normally overlooked by the human eye.7 Previous
studies have shown that spectral analysis has
high information content, albeit less than spatial
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information.8 Thus, combination of spectral imaging
with spatial analysis (morphology) could maximize
information obtainable from routine pathology
slides and could serve as a valuable ancillary test
in diagnostic pathology.

GENetic Imagery Exploitation (GENIE) is a re-
cently developed artificial intelligence platform that
allows optimization of image analysis algorithms
through selection of learned spatio-spectral fea-
tures.9 This system was originally conceived at the
Los Alamos National Laboratory for the analysis of
satellite images of the surface of the earth.10 GENIE
is a hybrid learning system that combines a genetic
algorithm that searches in a space of image-proces-
sing operations for a set that can produce suitable
feature planes with a more conventional classifier
that uses those feature planes to output a final
classification. In an evolutionary fashion, GENIE
generates a series of mathematical algorithms named
‘chromosomes’ by John Holland, the inventor of this
system of analysis. GENIE then assigns an indivi-
dual fitness score related to how well each chromo-
some classifies a set of training images. Each
chromosome is composed of a variable number of
mathematical operators that were named ‘genes’, in
analogy to the biological system on which the
mathematical model was based. The genes are then
interpreted serially to result in a chromosome’s
fitness score. At the end of each generation, GENIE
selects chromosomes to participate in processes of
crossover and mutation, with the probability of
selection being based on their fitness. This cycle is
repeated many times until optimal fitness or con-
vergence occurs. When compared to other super-
vised classifiers for multispectral image feature
analysis, GENIE outperformed them all in almost
every task tested, indicating higher sensitivity and
generalization abilities.11

Here, we first applied the GENIE hybrid genetic
algorithm to multispectral images obtained from
artificially produced Papanicolaou-stained cytology
slides containing defined mixtures of benign and
malignant colonic cells, to test if the system was able
to distinguish these classes, free of human interven-
tion. Then, we tested GENIE in the analysis of
routine urine cytology slides, which were prepared
at different time-periods and at separate institutions.
Finally, we evaluated GENIE’s performance on urine
cytology specimens that were initially called ‘atypi-
cal’ by the cytopathologist, to evaluate its potential
use as an ancillary test.

Materials and methods

Preparation of Cytology Specimen of Defined
Composition

Suspensions of benign and malignant colonic
epithelial cells were obtained by manually scraping
the mucosal surface of a fresh colon adenocarcino-
ma resection specimen received at the Department

of Pathology at Yale. The scraped material was
immediately suspended in RPMI medium and
gently dispersed using a glass Dounce homogenizer.
An aliquot of the suspension was used to determine
cell count using a hemocytometer. Viability was
at least 90% as determined by trypan blue dye
exclusion.12 Aliquots from each suspension were
mixed in 11 ThinPrept vials containing 20ml of
PreservCyts preservative at different final malig-
nant/benign cell ratios (from 0/100 to 100/0 in 10%
increments), and with a total cell concentration of
1� 105 cells/ml. A ThinPrept slide was prepared
from each vial in a 2000 ThinPrept processor
(Cytyc, Boxborough, MA, USA). All slides were
stained together with Papanicolaou stain. In all, 20
random, high-power (� 400) fields containing cells
or cell clusters were selected for multispectral image
acquisition (see the section; Data Collection). Five
extra additional areas were selected in the slides
containing 100 and 0% tumor cells, which were
used for GENIE training purposes.

Urine Cytology Specimen Selection

Papanicolaou-stained urine cytology ThinPrept
slides were collected from archival material at the
Departments of Pathology of Yale-New Haven
Hospital and University of Massachusetts Medical
School. Representative areas containing benign,
atypical or malignant urothelial cells were selected
by a cytopathologist for image data acquisition. The
collection of this material and associated clinical
information was approved by the Yale Human
Investigation Committee in protocol #8219.

Data Collection

High-power field (� 400) multispectral images were
acquired from selected areas of the ThinPrept
cytology slides at 420–700nm (10-nm intervals)
using a BH-2 Olympus light microscope (Olympus
America, Melville, NY, USA) equipped with a CRI
VariSpect and VIS2-CM liquid crystal tunable filter
(CRI, Woburn, MA, USA). The tunable filter was
coupled to a Retiga 1300 monochrome CCD camera
(Quantitative Imaging, Burnaby, BC, Canda). Both
CCD camera and VariSpec were controlled by CRI
acquisition software (CRI, Woburn, MA, USA).
Exposure time for each slide and wavelength was
calculated for each slide prior to each acquisition.
Background information was subtracted by acquir-
ing an area with no cells (one per slide) and flat-
fielding over the area of interest. Digital images were
produced as 29-stack arrays of 896� 768 pixels at
8-bit resolution (metafiles).

GENIE Training and ‘Chromosome’ Generation

Training multispectral image data were introduced
into the GENIE analysis by means of the ALADDIN
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Java-based graphic tool. ALADDIN allows the
analyst to select those areas in the imported training
images to be considered as ‘feature’ (eg malignant
cells) and ‘nonfeature’ (eg benign cells) by manually
painting those areas as a colored overlay (green
and red, respectively). These transformed images
(GENIE training files) are then imported in the
GENIE training dialog box window. Before starting a
training session, the learning system parameters
were specified in terms of number of chromosomes
per generation (60), maximum number of genes in
each algorithm (20), backend discrimination (Fish-
er), crossover mechanism (Singlepoint), crossover
rate (0.9), mutation parameter rate (0.25), gene
mutation rate (0.6), fitness metric (Hamming),
thresholding (Intelligent), selection rate (Tourna-
ment 3), elite fraction (0.1) and end-point fitness
(1000). The allowed number of generations was
different for each training session, ranging between
300 and 500.

Validation of GENIE ‘Chromosomes’

Multispectral image data from the test sets were
subjected to mathematical transformation by means
of those algorithms (chromosomes) previously
generated in the training process. The modified
result images could be viewed as green (feature) and
red (nonfeature) areas overlaying the original images
(used for orientation purposes), or as white–black
binary images (used for scoring purposes). Note that
the choice of the terms ‘gene’ and ‘chromosome’ is
that of the designers of genetic algorithms. Thus,
although they may be confusing in a biological
setting, we did not attempt to change these terms
since they are the standard terminology for genetic
algorithms. Since the image analysis of microscopic
slides by the GENIE’s chromosomes is not carried
out in the context of cells, tissues or disease, but
looking at pixel spectral quality and their spatial
mathematical integration, we needed, at least initi-
ally, to design a way to translate or ‘score’ its results
back to the clinical context. We chose to do it by
calculating the GENIE index value, which repre-
sents the proportion of pixels inside the selected
object of study (nuclei, whole cell, cell cluster, etc.)
that is recognized as ‘feature’. Based on these data,
receiver operator characteristic (ROC) curves were
constructed on Excel Analyze-its software (Leeds,
UK). Combined sensitivity and specificity were
calculated using increasing levels of GENIE index
as cutoff values.

Results

Detection of Malignant Cells in Defined-Composition
Cytology Specimens

This first experiment was performed to determine if
GENIE could recognize cancer cells from normal

cells in regular cytology preparations, however free
of subjective pathologist interpretation. For this
purpose, we created artificial cytology specimens
containing benign and malignant colonic epithelial
cells mixed at known different ratios. In this
particular case, we chose to use colon and not
bladder mostly for practical reasons and to avoid
possible interference due to inadvertent field effect,
which is a common feature of urothelial neoplasms.
The purpose of this experiment was to test if GENIE
could differentiate two distinct populations of cells
(benign and malignant) from routinely processed
ThinPreps cytology preparations. From each mix-
ture, one ThinPrept slide was prepared, and all
slides were stained together using the Papanicolaou
stain. GENIE training was performed with five high-
power (� 400) multispectral images (420–700nm,
10-nm intervals) acquired from the slides containing
0 and 100% tumor cells (10 multispectral images in
total). The training images were created by manually
marking every cell or cell cluster from the images
containing 0% tumor cells as ‘nonfeature’ or benign
(by overlaying red color), and every one from the
images containing 100% tumor cells as ‘feature’ or
malignant (by overlaying green color). These GENIE
training files were imported into the training session
dialog box and run for 300 generations. This process
generated a chromosome termed #004345, showing
fitness with respect to the training files set of 835 (a
score of 1000 would be consistent with the chromo-
some classifying every pixel in the training data set
correctly). The chromosome was composed of three
operators aligned in the following order: [ASF_
CLOP rD5 wS1 2 1][SUBP rD29 rD24 wS2][SQRT
rD12 wS0]. ASF_CLOP is an alternating sequential
filter (close–open), which basically performs an
open–close operation on data plane D5 (470 nm) at
increasing sizes using a circular structuring element,
writing the result in scratch plane S1. SUBP is a
subtract plane operator that subtracts data plane D24
(660nm) from data plane D29 (700 nm). SQRT
performs pixel-by-pixel square-root calculation in
data plane D12 (540nm) and writes the result in
scratch S0. The results from each scratch plane are
added into a feature plane and a threshold value is
calculated. In order to test this chromosome, new
multispectral test images were acquired from the
slides containing different proportions of malignant
to benign colonic epithelial cells (20 areas per slide,
including new images from the slides containing
100 and 0% malignant cells), and run in GENIE
using chromosome #004345. Visual comparison of
the GENIE result testing images from the slides
containing benign or malignant cells only showed
that most of the pixels corresponding to tumor cells
were clearly identified as ‘feature’ (green color
overlaying the original images), while those corre-
sponding to benign colonic epithelial cells were
ignored (red color, see Figure 1a). The same visual
analysis is not possible in those cases where
mixtures of both malignant and benign colonic
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epithelial cells are present, due to the fact that they
are hard to recognize on the original Papanicolaou
stained images. However, since the actual propor-
tion of cells in each slide is known, we could
evaluate GENIE’s performance by plotting the
proportion of total cell-associated pixels per image
that are identified as ‘feature’. As the relative
number of malignant cells in the original mixture
increases, so would the percentage of the total
cellular pixels (GENIE index) in the digital images.
This assumes that the cell mixtures are homo-
geneously layered on the slides by the ThinPrep
processor, which is not the exact case, and this may
be our largest source of error. However, these
inequalities should be partially compensated by
increasing the number of images taken per slide (we
used 20 images per slide). Also, since the surface
occupied by cells is variable from image to image,
we could not just use the total number of pixels
identified in each image, but should relate it to the
total cell surface (in pixels), excluding the back-
ground. In order to do this in an objective fashion
(again free of pathologist intervention), we created
chromosome #background_092603_000004 that
identifies background and ignores cells. Chromo-
some #background_092603_000004 was generated
using the same training images as chromosome
#004345, but selecting areas of background as
‘feature’ and areas containing cells (either benign

or malignant) as ‘nonfeature’. Chromosome #back-
ground_092603_000004 had the following sequence:
[RANGE rD24 wS2 2 1][MIN rS2 rD6 wS0][ADDP
rD19 rD8 wS1][ASF_OPCL rD22 wS2 2 1]. Based on
this sequence, the algorithm performs a combination
of pixel-neighborhood operations (RANGE; ASF_
OPCL), addition between two data planes (ADDP)
and a logical operation (MIN). We then combined
the results of both chromosomes in each validation
image, so as to mask the background, and exclu-
sively score the results on cell-associated pixels.
When we plotted the average GENIE index, using 20
random areas per slide (which represents approxi-
mately 5% of the operational surface in the
ThinPrept slide), we observed a fairly linear
relation between the percentage of tumor cells
known to be in the original suspensions and the
mean GENIE index (correlation coefficient: 0.84)
(Figure 1b).

Detection of Malignant Urothelial Cells in Routine
Urine Cytology Specimens

Our next step was to create a chromosome able to
detect malignant urothelial cells in routine urine
specimens. We trained GENIE with 12 Papanicolaou
stained ThinPrept urine cytology slides received in
the Department of Pathology at the Yale-New Haven
Hospital between 1996 and 1997. From these slides,
38 high-power multispectral images were acquired
and imported into the ALADDIN platform. In total,
161 nuclei from benign urothelial cells and 70
nuclei from malignant urothelial cells were marked
by a cytopathologist as ‘nonfeature’ and ‘feature’,
respectively. Cells showing atypia, but lacking the
definitive features of malignancy, as well as inflam-
matory cells and degenerated urothelial cells, were
not selected. GENIE training (500 generations) using
these files produced a single best chromosome,
#025867, containing four genes, which was evalu-
ated on two validation sets. The first set was
constructed from 17 unique patients’ slides with a
diagnosis of urothelial carcinoma received in the
Department of Pathology at Yale-New Haven Hospi-
tal between 1998 and 1999. The set contained a total
of 190 benign urothelial cells and 178 malignant
urothelial cells. GENIE identified malignant cells by
overlaying green color over their nuclear areas
(Figure 2, center column). Using 90% of the nuclear
area being identified as ‘feature’ as the cutoff value
(GENIE index value: 0.9), this chromosome classi-
fied malignant and benign urothelial cells with a

Figure 1 Detection of malignant cells in cytology specimens of defined composition using GENIE chromosome #004345. GENIE results
are displayed on the right as binary green (feature) and red (nonfeature) images, superimposed to the original image (which is better
appreciated on the left). (a) (A–D) Testing images taken from the slide containing no colon adenocarcinoma cells. (a) (E–H) Testing images
from the 100% colon adenocarcinoma slide. (b) Quantification of malignant colonic epithelial cells in mixtures of defined composition.
Every data point is the average of 20 high-power fields (� 400) from each slide, which was prepared from vials containing a defined
proportion of malignant cells.
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sensitivity and specificity of 87 and 96%. Atypical
or degenerate cells were not used in the calculation,
since they were excluded from the training set.
Inflammatory cells were also excluded; however,
this chromosome did not identify neutrophils as
‘feature’. The second validation set was composed of
eight cases (six positive for urothelial carcinoma and
two negative for malignancy) from the Department
of Pathology at University of Massachusetts Medical
School. The Papanicolaou staining protocol routi-

nely used at both institutions is similar. This test set
comprised 121 benign urothelial cells and 40
malignant urothelial cells. Against this set, chromo-
some #025867 demonstrated a sensitivity and
specificity of 85 and 96%.

Analysis of the sequence of chromosome #025687
showed that it is composed of four genes: [AS-
F_OPCL rD15 wS2 6 1][NEG_TH rS2 wS0 9
3][RANGE rD13 wS1 8 1][ASF_OPCL rS0 wS0 7 1].
In this case, only two data planes closely related in

Figure 2 Detection of malignant urothelial cells in routine urine cytology slides using GENIE. Original images are displayed on the left
side of the figure. The center column corresponds to GENIE result images using chromosome #025867. This chromosome identifies the
nuclei of urothelial carcinoma cells by overlaying green color over its surface. The right column shows the performance of chromosome
#025867 when spectral data planes D13 and D15 are switched (in an analogous fashion to transposition mutation).
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the spectra (rD15 corresponding to 570nm and rD13
to 550nm) were being used. This initially suggested
that the analysis codified by chromosome #025687
was mainly spatial. In order to test if any spectral
information was relevant for this chromosome
performance, we designed an experiment in which
the information from these two spectral data planes
is interchanged, by manually altering their location
in the metafile (image stack). As a result, the
mathematical operator that originally used the
550nm plane (RANGE) was given the 570nm plane
and vice versa (the first ASF_OPCL was performed
on the 550nm data plane). Under these new
conditions (homologous to genetic transposition),
chromosome #025867 misclassified several benign
nuclei as malignant (Figure 2, right column), further
illustrating the critical nature of the spectral com-
ponent of the analysis.

Detection of Malignant Urothelial Cells in ‘Atypical’
Urine Cytology Specimens

Adjudication of cases defined as ‘atypical’ repre-
sents a critical challenge for pathologists and a
potential clinical application of this technology. To
investigate this possibility further, we selected 16
unique urine cytology cases received at the Yale-
New Haven Hospital between 1995 and 1996 and
initially diagnosed as ‘atypical’ by the cytopatho-
logist of record. Eight slides (negative follow-up
group) corresponded to cases that had at least one
specimen subsequent to the index case where the
cytology, biopsy or surgical specimen was diagnosed
as ‘negative for malignancy’ in the following year.
Cases were excluded if subsequent specimens
included ‘atypical’, ‘suspicious’ or ‘positive for
malignant cells’ in the diagnostic text. The other
eight (positive follow-up group) had at least one
specimen subsequent to the index case where the
biopsy or surgical specimen was called ‘positive for
malignant cells’ in the following year. A single
image containing the most atypical cell cluster was
used for each case to define the training set. Areas
corresponding to the whole atypical clusters of the
‘follow-up positive group’ were manually desig-
nated as ‘feature’, while the ones of ‘follow-up
negative group’ as ‘nonfeature’, in the ALADDIN
platform. In this case, whole cells or cellular clusters
were used as the object of study, instead of nuclei,
due to the fact that the atypical cells of most cases in
our cohort were present in the form of cell
aggregates with common nuclear overlapping. By
using similar training conditions as those used for
chromosome #025867, GENIE generated chromo-
some #026897. Chromosome #026897 had the
following sequence: [QTREG rD26 wS1 wS2 wS0
0.05][SQRT rD13 wS1][SADIST rD4 rD23 rD5 rD21
rD16 rD22 rD0 rD24 rS1 rD7 wS0 �1.18 �1.00 1.38
0.94 �1.21 �1.24 1.23 1.00 0.88 �0.095]. The first
gene (QTREG) performs statistical analysis in rela-

tion to region size, while the second gene (SQRT) is
a basic mathematical operation (square root). The
third gene (SADIST) performs spectral angle calcu-
lations between neighborhood regions. The fitness
of this chromosome with respect to the training set
was 824, which means that 82.4% of the pixels
correctly distinguished feature from nonfeature. We
then prepared a completely unique validation set
using images from 34 ‘negative follow-up’ and 51
‘positive follow-up’ urine cytology cases from
archival material received between 1997 and 2002.
The criteria used in the selection of cases were
similar to those for the training set. One atypical cell
cluster per slide was selected for acquisition and
each sample corresponded to a different patient.
Scoring was carried out by calculation of the GENIE
index in each cell cluster alone. The results are
shown as a frequency distribution of GENIE index
scores (Figure 3a and b). The positive follow-up
group shows a significantly higher mean score than
the negative follow-up. There is no cut-point that
definitively separated both groups, but an ROC
curve could be generated based on the number of
pixels per cell cluster used to define a positive
identification. The area under the ROC curve
obtained with chromosome #026897 was 0.728
(Figure 4).

We attempted to improve the performance of
GENIE on atypical urine cytology cases by re-
training the system using a larger number of training
images (32 cases, including those used in the
previous training session). The assumption was that
by increasing the number of training images, GENIE
would generate a ‘smarter’ chromosome capable of
recognizing larger number of classificatory features.
Using this strategy, the resulting chromosome was
#020105, which displayed the following sequence:
[SANORM rD15 rD17 rD10 rD25 wS1 wS0 wS2][DI-
LATE rD16 wS0 2 7][MIN rS1 rD2 wS1][CLIP_HI
rD12 wS2 0.06][s.d. rS1 wS3 5 0][POS_TH rS2 wS1
10 3]. This is a relatively complex chromosome
that performs spectral analysis (SANORM), pixel
neighborhood operations (DILATE, s.d.: Standard
Deviation, POS_TH: Positive Top-Hat), threshold
operations (CLIP_HI: Clip-High) and a logical pixel-
wise minimum (MIN). The fitness of chromosome
#020105 with respect to the training set was 732,
which is lower than the one corresponding to the
previous chromosome (#026897) that was trained
with less number of cases. However, when this
chromosome was run on the test set, it performed
better compared to #026897 (Figure 3c and d), with
an area under the ROC curve of 0.784 (Figure 4).

Discussion

GENIE is a newly developed artificial intelligence
system that performs spatio-spectral analysis of
images. This is in contrast to a long history of
quantitative analysis systems tested on urine speci-
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mens which all have used spatial information, and
monochromatic (or panchromatic) optical den-
sity.13–16 In comparison to these types of studies,

GENIE increases the final information content by
adding spectral data, which, based on our previous
work,8 appears to contain relevant clinical informa-
tion. Note that the wavelengths selected by GENIE
are from a range of 29 wavelengths and are not those
that would create a standard RGB image. The fact
that certain wavelengths are more informative than
others suggests subtleties in protein–dye interac-
tions that are impossible to appreciate with the
human eye.

Our first goal was to prove that GENIE was able to
classify carcinoma cells in routine ThinPrept
cytology slides without human adjudication or
pathologist interpretation. For this purpose, we
created a series of artificial cytology slides contain-
ing defined mixtures of benign and malignant
colonic epithelial cells. GENIE was able to distin-
guish the malignant colonic cells from the benign
and estimate the relative amounts present in each
mixture. The results seen may underestimate the
discriminatory power of GENIE since the accuracy is
degraded by the inaccuracy of dilution of cells in
creation of the artificial cytology specimens.

Our second step was to create a chromosome that
could identify malignant urothelial cells in routine
ThinPrept cytology specimens. For this purpose,
GENIE was trained using examples of nuclei from
cytologically benign and malignant urothelial cells.
The chromosome obtained, termed #025867, when
validated against two cohorts of cases (from differ-
ent years and institutions), performed in a compar-
able way to the cytopathologist, showing combined

Figure 3 GENIE detection of malignancy in routine urine cytology slides previously diagnosed as ‘atypical’ by a cytopathologist. (a)
Results obtained with chromosome #026897 on atypical urine cytology cases with follow-up negative. (b) Results obtained with
chromosome #026897 on atypical cases with follow-up positive. (c) Results obtained with chromosome #020105 on atypical cases with
follow-up negative. (d) Results obtained with chromosome #020105 on atypical cases with follow-up positive.
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sensitivities and specificities of over 85 and 95%,
respectively. It is noteworthy that a critical difficulty
in this work is to compare the objective results of the
GENIE analysis to the subjective results of the
pathologist. This was particularly true when GENIE
was confronted with urine cytology cases that were
classified as ‘atypical’ by the cytopathologist. Cur-
rently, there is no completely accepted gold stan-
dard that we could use to unequivocally rule out
malignancy in a particular selected urothelial
cluster from any given cytology cases that carry a
diagnosis of ‘atypical’. An ‘atypical’ urine cytology
diagnosis followed by discovery of malignancy in a
cytoscopy a year later could mean either that it was
not detected (by calling it atypical in the previous
cytology specimen) or also that it developed after an
‘atypical, but in fact benign’ cytology specimen was
obtained. One possible way to solve this issue could
be the endoscopic biopsy of the urothelial mucosa at
the same time with the collection of urine, or the
simultaneous use of fluorescence in situ hybridiza-
tion to detect chromosomal abnormalities. Prospec-
tive studies like this are just being started in our
group, although they still may not offer a complete
assurance, since there could be limitations in
sampling. It needs to be stressed that the aim of
this study is to compare this technology to the ‘real-
life’ cytopathologist performance. In the present
study, the use of follow-up data with cytology,
biopsies and surgical specimens seemed the most
reasonable approach from a logistic point of view.
We limited the time frame to which the confirmatory
subsequent studies had to be performed to one year
from the time where the ‘atypical’ diagnosis was
made. This meant that one atypical cytology case
that had a follow-up malignant biopsy, for instance,
3 years later, was not included, because we do not
have a practicable way to prove if in fact the tumor
was in that original ‘atypical’ cytology specimen or
appeared later on. An atypical cytology was called
‘follow-up negative’ only when there was a subse-
quent specimen called negative (also in the follow-
ing year); however, if it was also followed by another
atypical (in that same year period), it was rejected.
In order to be consistent with our criteria of
selection, if an atypical cytology specimen was
followed by a negative cytology within the following
year, and years later a biopsy finds tumor, it was still
considered as ‘negative follow-up’, under the as-
sumption that this last biopsy is the result of the later
development of tumor. However, this last situation is
present in less than 5% of the cases used for the
construction of the validation set. Using these rules
of classification, GENIE produced chromosome
#026897, which was able to predict urothelial
malignancy in a cohort of 85 patients with a
combined sensitivity and specificity of approxi-
mately 67% (area under the ROC curve of 0.72).

It should also be noted that while the pathologist’s
report was generated looking at the whole slide, the
GENIE ‘diagnosis’ was based on a single cluster per

slide. Presumably, by increasing the number of cell
clusters analyzed by GENIE in the validation set, the
efficiency of the system should increase too.
Similarly, increasing the number of clusters in the
training set should also increase the accuracy of the
system. We pilot-tested this idea by doubling the
number of training images in a new training session.
GENIE generated chromosome #020105, which
showed higher sensitivity (78%) and specificity
(72%) on the same specimen set with an area under
the ROC curve of 0.78. Even though this number is
much better that the 0.50 inferred by the diagnosis of
‘atypical’, it should be interpreted with caution
when compared to the performance of a cytopatho-
logist. In future, larger studies will be required for
more accurate comparisons to pathologist perfor-
mance.

Interestingly, the fitness of this new chromosome
with respect to the original training set had a lower
value than the one found for chromosome #026897.
In addition, we noted that when chromosome
#020105 was run on the validation set, the range
in the GENIE index values was smaller. This
suggests that even when the new chromosome was
a ‘smarter’ one (since the area under the curve had
improved), it was more ‘hesitant’ too (since the
dynamic range of the GENIE index decreased). This
indicates that, as we increase the number of training
features, GENIE experiences more difficulties in
finding a single algorithm that could encompass
every spatio-spectral variant. This problem could
possibly be solved by: (1) using different training
conditions (eg increasing the number of generation
cycles), (2) retraining the system with the addition
of those features that were missed by the previous
chromosome (in the present study, the additional
cases were randomly selected) or (3) combining
algorithms trained to identify more restricted fea-
tures, and integrating them through a higher-order
‘cognizant’ chromosome (abstract thinking or data
fusion). This last option represents an area of
intensive research in modern computational analy-
sis of remote-sensing data,17 and is expected to
become the future realm of machine learning, as the
search for suitable algorithms will evolve far beyond
the human capabilities in a realistic time frame. We
have currently begun applying this concept on our
cytology samples in new studies in order to evaluate
its clinical potential.
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