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Patient-based cross-platform comparison
of oligonucleotide microarray expression

profiles
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The comparison of gene expression measurements obtained with different technical approaches is of
substantial interest in order to clarify whether interplatform differences may conceal biologically significant
information. To address this concern, we analyzed gene expression in a set of head and neck squamous cell
carcinoma patients, using both spotted oligonucleotide microarrays made from a large collection of 70-mer
probes and commercial arrays produced by in situ synthesis of sets of multiple 25-mer oligonucleotides per
gene. Expression measurements were compared for 4425 genes represented on both platforms, which revealed
strong correlations between the corresponding data sets. Of note, a global tendency towards smaller absolute
ratios was observed when using the 70-mer probes. Real-time quantitative reverse transcription PCR
measurements were conducted to verify expression ratios for a subset of genes and achieved good agreement
regarding both array platforms. In conclusion, similar profiles of relative gene expression were obtained using
arrays of either single 70-mer or multiple short 25-mer oligonucleotide probes per gene. Although qualitative
assessments of the expression of individual genes have to be made with caution, our results indicate that the
comparison of gene expression profiles generated on these platforms will help to discover disease-related gene

signatures in general.
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Today, researchers can choose from a broad variety
of methods for global transcriptional profiling.
Among the different technical approaches, micro-
array technology has gained a premier position. In
principle, microarrays can be produced either by
robotic printing (‘spotting’) of DNA on a chemically
modified glass surface," or by in situ synthesis of
oligonucleotides via custom phosporamidite chem-
istry using either photolithography on a silane-
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reacted quartz substrate® or ink-jet technology on a
hydrophobic glass support.®

Spotted arrays usually contain cDNA-specific
PCR amplicons (cDNA arrays), ranging from several
hundred to a few thousand basepairs in size.
Generally, no more than one amplicon is used to
probe a given gene. Although they are technically
challenging and require both optimized protocols*
and workflow,” cDNA arrays are typically produced
by individual research groups or core facilities.
Alternatively, they can be purchased from several
commercial suppliers. But after the discovery of
frequent discrepancies in the annotation of cDNA
clones,® investigators began to realize potential
drawbacks of this highly advocated technology. In
situ synthesis of oligonucleotide probes requires
sophisticated equipment for photolithography and
solid phase chemistry, which is usually too complex



and elaborate for an academic environment. A
widespread commercial implementation of this
technology is the Affymetrix GeneChip platform,?
which currently uses 11-16 pairs (11 for the arrays
used in this study) of perfect-match and single-base-
mismatch 25-mer oligonucleotides for each gene.
Recently, large collections of longer oligonucleo-
tides (50-80 bases), produced by established sup-
pliers using conventional phosphoramidite
chemistry, have become increasingly popular as
probes for spotted DNA arrays. Technical advan-
tages of oligonucleotide arrays include a constant
DNA concentration across all spots and biophysi-
cally optimized sequences, reducing secondary
structures, avoiding repetitive sequence motives
and providing a fixed range for both T, and length.
All this accounts for more uniform, stable and
predictable hybridization conditions. The overall
costs for long oligonucleotide arrays will often be
lower when labor and other costs associated with
cDNA libraries, such as replication, amplification or
sequence verification, are regarded.

Considering this diversity of approaches and the
resulting technical differences, researchers are
highly interested in the general accuracy and
reliability of microarray data and the cross-platform
comparability. Several independent methods like
Northern blotting or real-time quantitative reverse
transcription-PCR (RQ-PCR) have been used to
validate microarray results for a small number of
transcripts. Generally, there was a good agreement
between the corresponding values, affirming the
ability to accurately profile gene expression with
array-based approaches.

Former studies also compared global expression
measurements between cDNA arrays and short
oligonucleotide arrays”® or SSH.° Recently, Barczak
et al*®* compared results between spotted arrays of
70-mer oligonucleotides and in situ synthesized
Affymetrix GeneChip arrays. Using RNA of a cell
line and a commercial reference RNA, they found
strong correlations of the corresponding data sets.
Despite these studies clarifying some fundamental
questions, there still remains considerable uncer-
tainty regarding the comparability of data from
clinical specimens. As this lack of understanding

Table 1 Patient and disease characteristics
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constitutes a barrier, which keeps researchers from
an immense amount of potentially valuable informa-
tion (via efficient integration of microarray data
generated on different array platforms), we con-
ducted a comparison with tumor samples from
clinical practice, which evaluates cross-platform
reproducibility in a practical setting.

Materials and methods
Experimental Design

To assess the degree of concordance between
expression profiles obtained with either spotted
oligonucleotide microarrays made from a large
collection of 70-mer probes or commercial arrays
produced by in situ synthesis of sets of multiple 25-
mer oligonucleotides per gene, we analyzed relative
gene expression in a set of six human head and neck
squamous cell carcinoma (HNSCC) samples vs
either healthy control mucosa (n=4) or lymph node
metastases (n=2) of the respective patients as the
reference (Table 1). For the spotted 70-mer arrays,
relative expression levels were calculated by aver-
aging the normalized log,-ratios of two replicate
two-color hybridizations per patient, one performed
with inverse assignment of fluorophores (dye swap).
This procedure was used to eliminate dye-related
signal correlation bias."*'? For the commercial 25-
mer arrays, relative expression levels were derived
by subtracting normalized log,-transformed probe-
level data (fluorescence intensities) of two single-
color hybridizations per patient, corresponding to
the respective tumor and reference tissue.

Patient Characteristics and Tissue Samples

Tissue samples from six patients were obtained
during 1998-2002 from patients undergoing surgical
resection at the Department of Otorhinolaryngology,
JW-Goethe Universitdt Frankfurt. All cases were
diagnosed histopathologically as HNSCC and staged
according to the TNM classification of malignant
tumors,” based on criteria recommended by the
‘Union International contre le Cancer’ (UICC) (Table 1).

Patient Primary site Age (years) Sex pT pN PM Grading Samples analyzed®
160 Hypopharynx 48 M 3 1 0 2 PT/N
171 Hypopharynx 58 M 3 2a 0 2 PT/M
173 Oropharynx 56 M 3 2 0 2 PT/N
180 Hypopharynx 57 M 2 3 0 2 PT/N
186 Hypopharynx 47 F 2 2 0 2 PT/N
205 Oropharynx 49 M 3 1 0 2 PT/M

#All cases were diagnosed histopathologically as HNSCC and staged according to the TNM classification of malignant tumors. The indicated

tissues were used for gene expression profiling.
N: normal mucosa, PT: primary HNSCC, M: lymph node metastasis.
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The study protocol was approved by the local ethics
committee after obtaining the patients’ informed
consent to participate in the study, and was
processed anonymously. Grade 2 HNSCC speci-
mens, corresponding healthy control mucosa sur-
rounding the tumor and lymph node metastases
were surgically resected, immediately frozen in
liquid nitrogen and stored at —80°C. The neoplastic
specimens contained >80% tumor tissue and
<10% necrotic debris.

RNA Extraction

Frozen tissue samples (30-50mg) were combined
with 1ml Trizol (Invitrogen, Karlsruhe, Germany)
and dispersed using an Ultra-Turrax T25 tissue
homogenizer (IKA Werke, Staufen, Germany). Total
RNA was extracted according to the recommenda-
tions given by the Trizol protocol and further
purified on RNeasy Mini spin columns (Qiagen,
Hilden, Germany). Integrity and purity of total RNA
were assessed on a Bioanalyzer 2100 (Agilent
Technologies, Boeblingen, Germany) using a RNA
6000 Nano LabChip Kit (Agilent) according to the
manufacturer’s instructions.

Preparation and Postprocessing of Spotted
Oligonucleotide Arrays

Synthetic 70-mer oligonucleotides (‘Human Genome
Oligo Set Version 2.1’; consisting of 21 329 oligonu-
cleotides representing human genes and transcripts
plus 24 controls, as well as ‘Human Genome Oligo
Set Version 2.1 Upgrade’, consisting of 5462 human
70-mer probes) were purchased from Operon Tech-
nologies (Cologne, Germany) and dissolved in FBNC
spotting buffer (Formamide, Betaine, NitroCellu-
lose)* at 40uM, using a MiniTrak robotic liquid
handling system (Perkin Elmer, Rodgau-Juegesheim,
Germany). DNA spotting was performed in dupli-
cates on Nexterion Slide E epoxysilane coated slides
(SCHOTT Nexterion, Mainz, Germany) using a
VersArray ChipWriter Pro microarrayer (Bio-Rad,
Munich, Germany) equipped with Stealth SMP3
Micro Spotting Pins (Telechem, Sunnyvale, USA).
Spot centers were 129 um apart. DNA adhesion to
the glass surface was accomplished by 1h incuba-
tion at 60°C, followed by UV irradiation (2 x 120 mJ/
cm? at 254nm) in a Stratalinker Model 2400 UV
illuminator (Stratagene). Just prior to hybridization,
slides were washed for 2min in 0.2% SDS (w/v),
2min in ddH,O at room temperature and 2min in
boiling ddH,0 (95°C), followed by 3 min centrifuga-
tion at 2000r.p.m.

Target Preparation for Spotted Oligonucleotide Arrays

Fluorescent antisense cDNA was prepared from 2 ug
total RNA as described elsewhere."” Briefly, the
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mRNA content was linearly amplified by in vitro
transcription (“T7 amplification’). The resulting
aRNA was subsequently converted to cDNA and
labelled by dye-dUTP incorporation using Klenow
fragment.

Hybridization of Spotted Oligonucleotide Arrays

Corresponding dye-labelled ¢cDNA samples were
combined and purified on Microcon YM-30 filter
columns (Millipore, Eschborn, Germany), as pre-
viously described.’ For blocking of repetitive
sequence elements, 25 ug Cot-1 DNA (Roche Diag-
nostics), 25 pug poly-A RNA (Sigma) and 75 ug yeast
tRNA (Sigma) were added before the final washing
step. Purified, dye-labeled ¢cDNA was mixed with
120 ul UltraHyb hybridization buffer (Ambion),
agitated for 30-60min at 60°C, then for 10min at
70°C on a thermo mixer and subsequently applied to
preheated (60°C) microarrays mounted in a Gene-
TAC Hybridization Station (Genomic Solutions,
Ann Arbor, USA). Hybridizations were performed
for 16 h at 42°C with gentle agitation. Thereafter, the
arrays were automatically washed at 36°C with (i)
0.5 x SSC, 0.1% (w/v) SDS for 5min; (ii) 0.05 x SSC,
0.1% (w/v) SDS for 3 min; (iii) 0.05 x SSC for 2 min.
Flow time was set to 40, respectively. Immediately
after completion of the final washing step, the arrays
were unmounted, immersed in 0.05 x SSC, 0.1%
(w/v) Tween 20 and dried by centrifugation in 50 ml
Falcon tubes (30s at 500, 1000 and 1500r.p.m.,
respectively, followed by a final step of 90s at
2000r.p.m.).

Scanning, Image Analysis and Data Processing of
Spotted Oligonucleotide Arrays

Hybridized microarrays were scanned at 5um
resolution and variable PMT voltage to obtain
maximal signal intensities with <0.1% probe
saturation, a count ratio of 0.8-1.2 (Cy5/Cy3) and
maximal congruence of histogram curves, using a
GenePix 4000B microarray scanner (Axon Instru-
ments, Union City, USA). Subsequent image analy-
sis was performed with the corresponding software
GenePix Pro 5.0. Spots not recognized by the
software were excluded from further considerations.
Result files containing all relevant scan data were
further processed using the open source statistical
software environment R (http://www.r-project.org)*®
together with libraries (packages) of the Bioconduc-
tor project (http://www.bioconductor.org).’® Raw
fluorescence intensities were normalized applying
variance stabilization."” To eliminate low-quality
data, the data points were ranked according to spot
homogeneity, as assayed by the ratio of median-to-
mean fluorescence intensity, the ratio of spot-to-
local background intensity and the standard devia-
tion of the logarithmic ratios (log, Cy5/Cy3) between
spot replicates. Those data points ranked among the



lower 20% were removed from the data set. Genes
that could not be quantified in more than 33% of all
experiments after filtering were excluded as well. To
combine the data of dye swap experiments, the
log,-transformed intensity ratios of one array were
inverted and averaged with the corresponding
values of the other array.

Target Preparation, Hybridization and Data Analysis
for Affymetrix GeneChip Arrays

Total RNA (5 pg) was used to prepare biotinylated
cRNAs for hybridization, following the guidelines
given in the Affymetrix GeneChip Expression
Analysis Technical Manual."® ¢cRNA clean-up was
performed on RNeasy Mini filters (Qiagen). In all,
10 ug of fragmented, labelled cRNA were hybridized
to Affymetrix HG U133A arrays (Affymetrix, Santa
Clara, CA, USA) using standard conditions (16 h,
45°C). Arrays were washed and stained in a Fluidics
Station 400 (Affymetrix) and scanned on a Gene
Array Scanner 2500 (Agilent), as recommended by
Affymetrix. Raw fluorescence intensities from all
hybridizations were normalized applying variance
stabilization'” with additional scaling. Additionally,
MAS5" as well as gcRMA?° expression values were
calculated.

Matching of Oligonucleotide Probe Sequences

The Bioconductor R package AnnBuilder** and
GenBank accession numbers, provided by Affyme-
trix and Operon, were used to map probe sequences
to corresponding UniGene clusters (build #175).
Microarray data were only used if the Affymetrix
probe set and the Operon probe corresponded to the
same UniGene cluster from the intersection of both
platforms (n=4425). For simplicity, if probe sets
(Affymetrix) mapped to multiple UniGene clusters
or if several probes (Operon) or probe sets (Affyme-
trix) mapped to the same UniGene, they were
excluded from further analyses.

Statistical Analyses

To investigate the linear relationship between data
points in Figure 2, regression lines were determined
by minimizing the sum of squares of the Euclidean
distance of points to the fitted line (‘orthogonal
regression’), as there is no clear assignment of
dependent and independent variables. Correlations
were estimated using the Pearson correlation coeffi-
cient together with its 95% confidence interval. An
optional filtering procedure additionally excluded
those data points considered unreliable as they
correspond to probes associated with signal inten-
sities less than two standard deviations above local
background for at least one channel of the pair of
Operon chips or to probe sets with mean log,
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expression values below the median for all probe
sets of the pair of GeneChips.'®** We chose this
strategy in order to extract high-quality data from
both array platforms as a sound foundation for
quantitative comparisons. More sophisticated filter-
ing based on variance rather than absolute expres-
sion levels was not applied due to the deliberate
shortage of replicates. Expression ratios of genes
with a signal close to the background (low abun-
dance) in only one of the two investigated condi-
tions are clearly significant in a biological context.
They were, however, considered less appropriate to
this comparative study, as their results were ex-
pected to carry an increased and mathematically
inevitable degree of variation not caused by charac-
teristics of the investigated platforms.

Identification of differentially expressed genes
was performed by empirical Bayes inference for
paired data.?® Moderated t-statistics, based on
shrinkage of the estimated sample variance towards
a pooled estimate and corresponding P-values,
were calculated using the Bioconductor R package
limma.** P-values were adjusted according to the
method proposed by Benjamini and Hochberg®® to
control the false discovery rate at a level of 10%. The
magnitude of the effects as well as the correspond-
ing P-values are illustrated as volcano plots.*®

To remove systematic variation resulting from the
different technical approaches of the investigated
array platforms or differences in sample handling
procedures between the two labs participating in
this study, ‘Distance Weighted Discrimination
(DWD)’*” was performed on normalized log,-ratios
from both array platforms, using Matlab software
freely available at https://genome.unc.edu/pubsup/
dwd/. Further details about cross-platform adjust-
ment of microarray data can be obtained at (http://
genome.med.unc.edu:8080/caBIG/DWDNCI60.htm )
and (http://genome.med.unc.edu:8080/caBIG/paperl.
pdf). Identification of differentially expressed
genes and DWD were only performed for spots with
quantified log,-ratios in all four primary HNSCC vs
normal mucosa experiments.

Gene ontology (GO)?*® data mining was performed
using the GOCharts functionality of the ‘Database for
Annotation, Visualization and Integrated Discovery
(DAVID)’,?® which is available at http://david.niaid.
nih.gov/david/. Overrepresentation analysis was
carried out with the software application ‘Expres-
sion Analysis Systematic Explorer (EASE)’,*°
downloaded from http://david.niaid.nih.gov/david/
ease.htm.

Real-Time PCR Analysis

For selected genes (Table 2), changes in mRNA
levels detected in microarray experiments were
evaluated by reverse transcription (RT) and quanti-
tative real-time PCR analysis, using the iCycler
(BioRad, Munich, Germany). In all, 1ug of total
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Table 2 Primer sequences used for RQ-PCR

Gene symbol

Forward primer (5 — 3')

Reverse primer (5 — 3')

OSF2 ATTAGGCTTGGCATCTGCTC CTCGCGGAATATGTGAATCG
GMDS GCGCTCATCACCGGTATCAC CTCTGGGCTCCAAGGTTGTAG
TMPRSS2 TCCTGACGCAGGCTTCCAAC CGAACACACCGATTCTCGTCC
BGN TGGTTCAGTGCTCCGACCTG GGATCTCCACCAGGTGGTTC

RNA was converted to cDNA using Superscript II
reverse transcriptase (Invitrogen) and oligo(dT)
primer, according to the manufacturer’s specifica-
tions. PCR reaction mixtures consisted of 12.5ul
of 2x iQ™ SYBR®™ Green Supermix (Abgene,
Hamburg, Germany), 0.5ul of each 10uM target
primer and 1ul diluted cDNA template (1:10) in a
reaction volume of 25ul. Thermal cycling condi-
tions comprised an initial denaturation step of
15min at 95°C, 40 cycles of 30s at 95°C and 30s
variable annealing/elongation temperature, depend-
ing on the respective set of target primers. dsDNA-
specific fluorescence was measured at the end of
each extension phase. Product-specific amplifica-
tion was confirmed by a melting curve analysis. The
relative expression ratio (R) of a target gene was
calculated using the equation

(Etarget ) Acplargel (control—sample)

(Eref ) ACPys (control—sample)

based on its real-time PCR efficiencies (E) and the
crossing point (CP) differences of sample vs a
control, and expressed in comparison to a reference
gene.?® The target gene expression was normal-
ized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH).

Accession Numbers

All relevant data from this study are available from
GEO?®? (http://www.ncbi.nlm.nih.gov/geo) under the
accession numbers GPL96 and GPL1384 (for the
array platform), GSM29702-GSM29705, GSM29747-
GSM29758, GSM29808-GSM29813, GSM29818 and
GSM29820 (for expression data from individual
arrays) as well as GSE1722 (for the experimental
series).

Results
Probe Matching

We analyzed the gene expression profiles of 12
specimens obtained from six head and neck cancer
patients (Table 1). Four primary HNSCC were
assayed vs corresponding healthy mucosa and
another two primary HNSCC vs corresponding
lymph node metastases of the respective patients.
This analysis was performed both on in situ-
synthesized Affymetrix HG-U133A arrays, containing
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Affymetrix HG-U133A
22 283 probe sets

Operon Oligo Set V2.1
26 791 probes

9 867 UniGenes

13 604 UniGenes

Figure 1 Intersection of probes or probe sets from the different
array platforms. Probe sequences were mapped to UniGene
clusters (build #175), based on GenBank accession numbers
provided by the manufacturers. A total of 9867 UniGene clusters
were found for the probe sets of the HG-U133A arrays, while
13 604 were retrieved for the Operon arrays. A total of 4425 genes
were represented on both array types.

22283 sets of 25-mer probes, and on spotted long
oligonucleotide arrays containing 26791 70-mer
probes of the Operon Human Genome Oligo Set
Version 2.1 and Version 2.1 Upgrade. A total of 9867
UniGene clusters were found for the probe sets of
the HG-U133A arrays, while 13604 were retrieved
for the Operon arrays, using GenBank accession
numbers provided by the manufacturers. A total of
4425 genes were represented on both platforms, as
identified by consistent assignment of UniGene
clusters to the corresponding probes or probe sets.
We used this large set of genes as a basis for
comparing expression data from the two array
systems (Figure 1).

Intraplatform Reproducibility of Expression Ratios

For the platform of spotted long oligonucleotide
arrays, correlations of expression ratios measured on
individual arrays were r=0.99 for identically
repeated hybridizations and r=—0.98 for dye swap
hybridizations repeated with inverse assignment of
fluorophores (data not shown). Similar correlations



had been reported for the Affymetrix system.**
Hence, both array platforms provide highly repro-
ducible measurements of gene expression profiles,
which is an essential prerequisite for the success of
a cross-platform comparison.

Cross-Platform Reproducibility of Expression Ratios

Normalized log,-transformed absolute signal inten-
sities were calculated for the arrays from both
platforms using variance stabilization by vsn.'” For
GeneChip arrays, log, expression ratios were ob-
tained by subtracting log,-transformed absolute
signal intensities of the two respective arrays from
each patient. For the spotted long oligonucleotide
array, log,-ratios from two-color dye swap hybridi-
zations were inverted and averaged. To ensure that
the observed effects were not due to characteristics
of the data processing algorithm, we repeated the
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analyses of GeneChip arrays using background
correction and normalization by gcRMA®*° as well
as the MAS5 algorithm." For all patients, there was
a clear correlation between differential expression
measurements made with either array type (r=
0.56-0.76), and the correlation improved substan-
tially (r=0.61-0.85) when measurements from
probes with low-intensity signals were excluded
(Figure 2). Except for patients 160 and 186, the
respective regression lines all showed a slope
clearly smaller than 1, indicating that, on average,
absolute log ratios obtained on the Operon long
oligonucleotide platform were lower than the
corresponding values measured with Affymetrix
arrays. The changes in correlation were marginal
when gcRMA was used to normalize the GeneChip
results. MAS5 vyielded lower correlations with
unfiltered data, but the results were similar to
those of vsn or gcRMA when filtered data were used
(Table 3).

a patient 160 b patient 171 c patient 173
r = 0.6063 (0.5762, 0.6348) r = 0.7586 (0.7394, 0.7766) r = 0.7863 (0.7685, 0.8029)
101 y = 1.033 x + 0.006 101 y = 0.730 x + 0.059 101 y = 0.746 x + 0.080
e 5 c 5 e 5§
2 g 2
5 s &
=] 0 -] 0 o 0
S = )
fud i e
on on on
S 5 L .5 L 5
-10 = 0.5637 (0.5405, 0.5860) 10 r = 0.6837 (0.6659, 0.7008) -10 r = 0.6960 (0.6788, 0.7125)
y = 1.349 x + 0.095 y = 0.850 x + 0.026 =0.843 x + 0.093
10 -5 0 5 10 10 -5 0 5 10 -0 -5 0 5 10
log ratio Affymetrix log ratio Affymetrix log ratio Affymetrix
d patient 180 e patient 186 f patient 205
r = 0.7715 (0.7530, 0.7889) r = 0.7224 (0.6996, 0.7437) r = 0.8477 (0.8344, 0.8600)
101 y =0.742 x + 0.121 101 y = 0.824 x - 0.087 101 v =0.801 x + 0.116
5 5 g 5 5 5
: & 2
r e o 0 o 0
- - -t
e [ [
on on on
S .5 S5 S5
10 r = 0.6784 (0.6603, 0.6957) 10 r = 0.6562 (0.6370, 0.6746) 10 r = 0.7586 (0.7442, 0.7724)
v = 0.887 x - 0.132 y=1.011x - 0.092 y = 0.895 x + 0.057
10 -5 0 5 10 -10 -5 0 5 10 10 -5 0 5 10

log ratio Affymetrix

log ratio Affymetrix

log ratio Affymetrix

Figure 2 Scatter plots comparing normalized, log,-transformed expression ratios of spotted long oligonucleotide arrays to ratios obtained
with Affymetrix GeneChip short oligonucleotide arrays. For the spotted arrays, normalized ratio data from dye swap experiments were
combined. For Affymetrix arrays, the ratios of normalized intensity values from corresponding arrays were used. Hybridized targets were
derived from (a) patient 160, (b) patient 171, (c) patient 173, (d) patient 180, (e) patient 186 and (f) patient 205. Orthogonal regression
analysis was performed to derive the regression lines shown in black (unfiltered data) and red (filtered data) as well as their respective
linear equations (shown in the lower part of the plots for unfiltered data and in the upper part for filtered data). Pearson’s correlation
coefficients and their associated 95% confidence intervals are listed as well. Dashed lines through origin with slope 1 are displayed to
accentuate the reduced slope. For panels (a)—(f), calculations were based on 3472, 3595, 3600, 3569, 3522 and 3474 data points for the
unfiltered data sets as well as 1796, 2011, 1889, 1954, 1816 and 1866 data points for the filtered data sets.
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Table 3 Correlation of gene expression ratios obtained with either Affymetrix GeneChip arrays or Operon long oligonucleotide arrays

Patient Affy vsn vs Operon vsn® Affy MAS5 vs Operon vsn® Affy gcRMA vs Operon vsn®
160 0.564 (0.606) 0.456 (0.571) 0.544 (0.585)
171 0.684 (0.759) 0.453 (0.707) 0.671 (0.749)
173 0.696 (0.786) 0.553 (0.783) 0.710 (0.795)
180 0.678 (0.772) 0.577 (0.763) 0.681 (0.777)
186 0.656 (0.722) 0.561 (0.712) 0.664 (0.734)
205 0.759 (0.848) 0.636 (0.837) 0.762 (0.841)

#GeneChip results were normalized by variance stabilization (vsn), "MAS5, and ‘gcRMA.
Values obtained upon removal of low-intensity signals are given in parentheses.

Table 4 Correlation of gene expression ratios before and after systematic bias correction by DWD

Patient

Affy vsn vs Operon vsn®

Affy MAS5 vs Operon vsn®

Affy gcRMA vs Operon vsn®

160

173

180

186

r: 0.550 (0.704) [0.735]
s: 1.343 (1.289) [1.126]

r: 0.686 (0.848) [0.893]
s: 0.865 (0.906) [0.867]

r: 0.697 (0.785) [0.816]
s: 0.852 (0.878) [0.828]

r: 0.667 (0.771) [0.830]
s: 0.937 (0.956) [0.874]

r: 0.431 (0.577) [0.693]
s: 0.755 (0.899) [1.280]

r: 0.544 (0.701) [0.886]
s: 0.539 (0.677) [0.911]

r: 0.577 (0.680) [0.806]
s: 0.644 (0.747) [0.940]

r: 0.568 (0.680) [0.819]
s: 0.647 (0.744) [0.895]

r: 0.525 (0.678) [0.703]
s:1.137 (1.237) [1.083]

r: 0.707 (0.850) [0.896]
s: 0.745 (0.853) [0.811]

r: 0.696 (0.778) [0.821]
s: 0.767 (0.838) [0.805]

r: 0.674 (0.767) [0.824]
s: 0.739 (0.809) [0.726]

#GeneChip results were normalized by variance stabilization (vsn), "MAS5, and ‘gcRMA.
Values obtained upon bias correction by DWD are given in parentheses. Values in brackets were derived after additionally removing low-intensity

signals.

r: Pearson correlation. s: slope of the respective orthogonal regression lines.

Systematic Bias Correction by ‘DWD’

As the samples were processed at different institu-
tions and assayed using different array platforms
and protocols, considerable systematic biases were
expected to be manifested in the data sets as
differences in gene expression patterns. In order to
identify and adjust systematic biases imposed by
characteristics of the different array platforms, we
used the method of DWD.?” Following this proce-
dure, there was a clear improvement in the correla-
tions of relative expression measurements (Table 4).
As before, correlations obtained after normalization
by MAS5 were lower than the respective values
generated with vsn or gcRMA, unless low-intensity
signals were excluded from the analyses. The
respective orthogonal regression lines showed little
if any change in slope when the data from both
platforms had been normalized by the vsn algo-
rithm. Moderate changes were detected upon DWD
in case gcRMA had been used to normalize Affyme-
trix data, whereas normalization by MAS5 tended to
cause more severe variation. On average, the slopes
were closest to 1 when vsn was used to normalize
the Affymetrix data and deviated the most from 1
upon normalization by MAS5. As expected, sys-
tematic bias correction by DWD shifted the slopes
towards one in almost all cases (Table 4).

Laboratory Investigation (2005) 85, 1024—1039

Significant Differences and Similarities

A different approach to detect differences between
the two array systems is to compare the sets of genes
identified as differentially expressed. In Figure 3,
volcano plots®*® show the log,-ratios of those 2861
genes consistently detected in the four primary
HNSCC vs normal mucosa experiments and their
respective P-values. The two platforms identified
similar numbers of differentially expressed genes
(=>2-fold difference), both regarding raw P-values
(P<0.001) or FDR-adjusted P-values (adj. P<0.1).*°
There were 45 genes identified as differentially
expressed in all tumor samples on the Affymetrix
platform, 53 were scored on Operon arrays, and the
intersection contained 21 genes discovered on both
systems (Table 5, Figure 4a). Plotting of the
corresponding mean log ratios (Figure 4b) revealed
that even genes scored by only one of the systems
generally showed the same direction, but not the
same degree of differential expression on the other.
GO data mining*® for ‘biological process’ (at level 3)
assigned the majority of annotated genes from each
platform to cell growth and/or maintenance as well
as various metabolic pathways (Figure 5). However,
using the software EASE,*° which performs a
statistical analysis of the GO categories assigned to
the differentially expressed genes, accounting for
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Figure 3 Volcano plots of P-values against log,-transformed expression ratios. Mean log,-ratios of tumor vs reference samples are shown
on the x-axis. The corresponding P-values of significance, derived by empirical Bayes inference (a, b) or empirical Bayes inference and
subsequent adjustment to control the FDR (c, d), are displayed on the y-axis. Results are shown for those 2861 genes consistently detected
in the four primary HNSCC vs normal mucosa experiments. The plots were segmented to illustrate the relation of statistical significance
(P<0.005, adj. P<0.1) to significance based on a two-fold change criterion. Only genes indicated by spots in the upper left and right
segments of the plots satisfy both criteria, their numbers explicitly shown. Genes located in the lower left and right segments display a
large fold-change but fail to achieve statistical significance. Genes found in the middle segments show no relevant difference of
expression, with (upper segments) or without (lower segments) additional statistical significance associated with this observation.

the distribution of GO categories in the list of all
analyzed genes to find those categories that are the
most overrepresented (and can therefore be de-
scribed as ‘themes’), revealed a trend towards
components of the extracellular matrix for both of
the platforms. Furthermore, genes involved in lipid
metabolism were significantly overrepresented only
among the differentially expressed genes identified
on the Affymetrix system, whereas the Operon
platform additionally detected genes engaged in
ion binding (Table 6).

RQ-PCR Analysis

For a small subset of genes, we verified differential
expression measurements by RQ-PCR analysis (Fig-
ure 6). There was good qualitative agreement
between the values determined by either GeneChip
arrays, Operon arrays or RQ-PCR. All platforms
showed the same direction of regulated gene
expression. However, the magnitude of differential
expression differed considerably depending on both
the experimental approach and the algorithm

Laboratory Investigation (2005) 85, 1024—1039



6£01—-%201 ‘S8 (5007) uonesnseau] A10jeI0qeT]

Table 5 Genes scored as differentially expressed with either one or both evaluated platforms

UniGene Gene name Gene symbol OMIM  Log, Affy* P-value Affy* log, Operon® P-value Operon® A exp Affy® A exp Operon®
Hs.136348 osteoblast specific factor 2 (fasciclin I-like) OSF-2 6.01 0.07 4.67 0.01 + +
Hs.443625 collagen, type III, alpha 1 COL3A1 120180 1.05 0.19 3.87 0.01 - +
Hs.75823 ALL1-fused gene from chromosome 1q AF1Q 604684 3.78 0.10 2.99 0.04 + +
Hs.28792 inhibin, beta A (activin A, activin AB alpha INHBA 147290 3.72 0.05 —-0.11 0.85 + -
polypeptide)
Hs.232115 collagen, type I, alpha 2 COL1A2 120160 3.60 0.06 0.58 0.39 + -
Hs.528321 collagen, type V, alpha 1 COL5A1 120215 2.44 0.09 3.38 0.01 + +
Hs.437173 collagen, type IV, alpha 1 COL4A1 120130 3.28 0.06 3.05 0.04 + +
Hs.409602 sulfatase 1 SULF1 2.88 0.10 2.59 0.03 + +
Hs.372679 Fc fragment of IgG, low affinity Illa, receptor for FCGR3A 146740 1.10 0.40 2.67 0.07 - +
(CD16)
Hs.434488 chondroitin sulfate proteoglycan 2 (versican) CSPG2 118661 2.66 0.08 2.43 0.04 + +
Hs.821 biglycan BGN 301870 2.15 0.09 2.65 0.07 + +
Hs.83354 lysyl oxidase-like 2 LOXL2 606663 0.10 0.86 2.39 0.05 — +
Hs.435795 insulin-like growth factor binding protein 7 IGFBP7 602867 0.87 0.23 2.20 0.07 - +
Hs.118893 Melanoma associated gene D25448 600134 2.11 0.23 2.15 0.07 — +
Hs.408096 fragile X mental retardation, autosomal homolog 1 FXR1 600819 2.06 0.07 1.21 0.14 + -
Hs.102308 potassium inwardly-rectifying channel, subfamily J, KCNJ8 600935 1.33 0.13 2.04 0.08 - +
member 8
Hs.15099 Rho-related BTB domain containing 1 RHOBTB1 607351 2.03 0.06 0.88 0.17 + -
Hs.122645 laminin, beta 1 LAMB1 150240 1.89 0.07 1.96 0.02 + +
Hs.81988 disabled homolog 2, mitogen-responsive DAB2 601236 1.48 0.26 1.93 0.07 — +
phosphoprotein (Drosophila)
Hs.235935 nephroblastoma overexpressed gene NOV 164958 1.82 0.10 1.40 0.13 + -
Hs.85195 myeloid leukemia factor 1 MLF1 601402 1.64 0.10 1.20 0.16 + —
Hs.246875 DRE1 protein DRE1 1.31 0.23 1.61 0.07 - +
Hs.436708 Kruppel-like factor 7 (ubiquitous) KLF7 604865 1.55 0.10 0.35 0.49 + -
Hs.278469 taste receptor, type 2, member 14 TAS2R14 1.52 0.10 0.01 1.00 + —
Hs.7753  calumenin CALU 603420 1.48 0.15 1.27 0.07 - +
Hs.528298 Sec23 homolog A (S. cerevisiae) SEC23A 1.43 0.10 —0.16 0.78 + -
Hs.433452 HEG homolog HEG 1.42 0.07 0.77 0.23 + -
Hs.179657 plasminogen activator, urokinase receptor PLAUR 173391 1.15 0.23 1.41 0.08 — +
Hs.16530 chemokine (C-C motif) ligand 18 (pulmonary and CCL18 603757 1.20 0.28 1.40 0.08 — +
activation-regulated)
Hs.370774 ankyrin repeat and BTB (POZ) domain containing 2 ABTB2 0.65 0.36 1.38 0.07 - +
Hs.312419 origin recognition complex, subunit 3-like (yeast) ORC3L 604972 1.36 0.11 1.37 0.08 — +
Hs.462693 zinc finger protein 22 (KOX 15) ZNF22 194529 0.90 0.35 1.27 0.09 - +
Hs.130958 ribonuclease/angiogenin inhibitor RNH 0.18 0.78 —1.06 0.10 — +
Hs.1321  coagulation factor XII (Hageman factor) F12 234000 —0.02 0.98 —1.28 0.07 — +
Hs.434933 regulator of G-protein signalling 12 RGS12 602512 0.26 0.67 —1.37 0.08 - +
Hs.112028 misshapen/NIK-related kinase MINK —0.46 0.51 -1.39 0.08 - +
Hs.5215  integrin beta 4 binding protein ITGB4BP 602912 —1.41 0.10 -1.11 0.18 + -
Hs.211556 ELOVL family member 6, elongation of long chain =~ ELOVL6 —1.48 0.08 —0.60 0.32 + -
fatty acids
Hs.40968 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 HS3ST1 603244 —0.11 0.85 —1.53 0.08 — +
Hs.132853 enthoprotin ENTH 607265 —1.56 0.10 —0.70 0.55 + -
Hs.528666 RAR-related orphan receptor A RORA 600825 —1.56 0.10 —1.45 0.14 + -
Hs.15519 oxysterol binding protein-like 2 OSBPL2 606731 —1.66 0.06 —1.03 0.17 + -
Hs.91139 solute carrier family 1, member 1 SLC1A1 133550 —1.68 0.08 —1.34 0.14 + -
Hs.378738 AHNAK nucleoprotein (desmoyokin) AHNAK -1.71 0.20 -1.51 0.09 — +
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Table 5 Continued

UniGene Gene name Gene symbol OMIM  Log, Affy* P-value Affy* log, Operon* P-value Operon® A exp Affy° A exp Operon®
Hs.393239 sterol-C4-methyl oxidase-like SC4MOL 607545 —1.81 0.10 —0.52 0.61 + -
Hs.77870 hypothetical protein FLJ12750 FLJ12750 —1.66 0.17 —1.83 0.08 - +
Hs.212787 Microtubule associated serine/threonine kinase MAST4 —1.80 0.12 —1.89 0.07 - +
family member 4
Hs.105435 GDP-mannose 4,6-dehydratase GMDS 602884 —-1.91 0.13 —1.68 0.09 +
Hs.82237 tripartite motif-containing 29 TRIM29 0.13 0.83 -1.93 0.05 - +
Hs.166311 SAM and SH3 domain containing 1 SASH1 607955 —1.42 0.11 —1.96 0.07 - +
Hs.1588  4-aminobutyrate aminotransferase ABAT -1.97 0.08 —0.94 0.18 + -
Hs.424551 integral type I protein P24B —2.02 0.08 —1.56 0.08 + +
Hs.434243 KIBRA protein KIBRA -1.21 0.10 —2.04 0.06 + +
Hs.90797 O-acyltransferase (membrane bound) domain OACT2 —1.61 0.16 —2.06 0.08 — +
containing 2
Hs.437043 KIAA0540 protein KIAA0540 —1.43 0.10 —2.13 0.06 + +
Hs.446429 prostaglandin D2 synthase 21kDa (brain) PTGDS 176803 -1.93 0.10 -2.15 0.05 + +
Hs.5541  ATPase, Ca++ transporting, ubiquitous ATP2A3 601929 —1.89 0.09 —2.23 0.02 + +
Hs.356726 scinderin SCIN —-0.76 0.32 —2.26 0.02 — +
Hs.118747 solute carrier family 15 (H+/peptide transporter), SLC15A2 602339 —2.30 0.07 -2.13 0.11 + -
member 2
Hs.430324 annexin A9 ANXA9 603319 —-1.80 0.34 —2.30 0.07 — +
Hs.206501 hypothetical protein from clone 643 LOC57228 -2.35 0.07 —2.36 0.02 + +
Hs.169238 fucosyltransferase 3 (galactoside 3(4)-L- FUT3 111100 —2.43 0.08 —1.59 0.10 + -
fucosyltransferase)
Hs.348350 dehydrogenase/reductase (SDR family) member 1 DHRS1 —2.43 0.10 —2.20 0.03 + +
Hs.257697 programmed cell death 4 (neoplastic PDCD4 —2.45 0.06 -1.21 0.27 + -
transformation inhibitor)
Hs.282975 carboxylesterase 2 (intestine, liver) CES2 605278 —1.92 0.10 —2.49 0.02 + +
Hs.31130 transmembrane 7 superfamily member 2 TM7SF2 603414 —2.08 0.07 —3.05 0.01 + +
Hs.436657 clusterin (complement lysis inhibitor, CLU 185430 —2.10 0.28 -3.11 0.04 - +
apolipoprotein J)
Hs.167218 BarH-like homeobox 2 BARX2 604823 —-1.23 0.09 -3.28 0.01 + +
Hs.134478 RecQ protein-like 5 RECQLS5 603781 0.26 0.65 -3.31 0.04 - +
Hs.439309 transmembrane protease, serine 2 TMPRSS2 602060 —3.44 0.06 -3.19 0.02 + +
Hs.298023 aquaporin 5 AQP5 600442 —1.44 0.36 —3.58 0.06 — +
Hs.272813 dual oxidase 1 DUOX1 606758 —-1.28 0.28 —-3.72 0.08 - +
Hs.103944 mucin 7, salivary MUC7 158375 —-3.77 0.10 —0.62 0.32 + -
Hs.116651 epithelial V-like antigen 1 EVA1 604873 —3.96 0.07 -1.97 0.22 + —
Hs.438862 EPS8-like 1 EPS8L1 —3.63 0.07 —-5.11 0.02 + +
Hs.226391 anterior gradient 2 homolog (Xenopus laevis) AGR2 606358 —5.75 0.05 —1.33 0.14 + -
Hs.13775 homeodomain-only protein HOP 607275 —6.35 0.06 —2.42 0.07 + +

Differentially expressed genes were selected from a subset (n=2861) consistently detected in the four primary HNSCC vs normal mucosa experiments.
#log,-transformed expression ratios were averaged within each platform.

bCorresponding P-values of significance derived by empirical Bayes inference and subsequent adjustment to control the FDR.

“To be scored as differentially expressed (A exp), genes had to satisfy both statistical significance (P<0.1) and significance based on a two-fold change criterion.
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Figure 4 Summary of genes scored as differentially expressed
with either one or both evaluated platforms. (a) Venn diagram
showing subsets of genes that exhibit a significant differential
expression with either technology, taken from a pool that
contained only those genes that could repeatedly be quantified
in the four primary HNSCC vs normal mucosa experiments. (b)
log—log plot illustrating the relationship of the log-ratios for the 77
genes shown in (a).

applied for normalization. Firstly, GeneChip inten-
sity measurements were transformed by variance
stabilization (vsn), which was also used for the long
oligonucleotide arrays and derives an approximately
constant variance along the complete intensity
range."”” Normalization was additionally accom-
plished employing the MAS5 algorithm from the
current version of the Affymetrix Microarray Suite
software package."® At least for the small number of
genes and patients shown here, there is a tendency
for higher ratios with vsn normalization.

Discussion

The comparison of gene expression measurements
obtained with different technical approaches or

Laboratory Investigation (2005) 85, 1024—1039

different implementations of a proven technology
is of considerable interest to researchers from all
fields of the biological and biomedical sciences.
Several studies have addressed this topic, with
rather heterogeneous results.

Recently, Mah et al® compared absolute expres-
sion levels quantified on Affymetrix short oligonu-
cleotide and radioactively labeled cDNA-based filter
arrays. The expression values from the two techno-
logies showed merely poor correlations. Tan et al**
evaluated the performance of three commercial
microarray platforms and found only modest corre-
lations when comparing both absolute and relative
gene expression measurements. Strikingly, log,-
ratios from the two platforms using short oligonu-
cleotide probes and biotinylated cRNA targets
(Affymetrix and Amersham; r=0.52) did not corre-
late better with each other than with those of cDNA
arrays (Agilent; r=0.53 or r=0.59). In a comparison
of Affymetrix GeneChip arrays and two different
collections of 70-mer oligonucleotides, Barczak et
al*® found moderate correlations of corresponding
signal intensities (r=0.56—0.60), but strong correla-
tions of respective relative expression values
(r=0.80 without filtering, r=0.83—0.89 after exclu-
sion of probes or probe sets with low signal
intensities). Similarly, Shippy et al’® described
improved correlations between expression measure-
ments from Affymetrix GeneChip and Amersham
CodeLink arrays upon removal of genes within
platform noise (r=0.62 vs r=0.79). Measuring
relative gene expression values on Affymetrix short
oligonucleotide arrays, commercial (Agilent) and
custom-made, sequence-validated cDNA arrays, Jar-
vinen et al’® observed reasonable correlations of
log,-ratios. Interestingly, the correlation between the
two different cDNA platforms (r=0.73) was weaker
than the correlations between the commercial or
custom-made cDNA arrays and the Affymetrix
system (r=0.84 and 0.76, respectively). A recent
study by Tan et al,** showing very poor correlation
between Affymetrix, Amersham and Agilent arrays,
came to broad public attention®” and raised general
concerns regarding the comparability of expression
data across labs and platforms.

A different approach to review the possibility for
meaningful translation of microarray data is meta-
analysis of extensive data sets of similar type,
produced in different labs and on different plat-
forms.?**° Since many additional parameters such
as classification of the samples or individual
laboratory practices influence the outcome of these
studies, the results are rather inconclusive concern-
ing comparability on the technological level. Gen-
erally, at least common patterns and/or groups of
genes could be confirmed.

Aside from meta-analyses, the above-mentioned
studies were usually based on data generated with
homogeneous cell lines and by averaging over
several technical replicates. We intended to increase
the practical significance of our evaluation by the
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Figure 5 GO data mining. The 45 regulated genes detected with the Affymetrix system as well as the 52 regulated genes found with
Operon arrays were characterized according to their biological process classification in the GO database (at level 3). Roughly half of the
genes did not have a GO classification at this level. The majority of the remaining genes were involved with cell growth and/or

maintenance as well as various metabolic pathways.

use of clinical samples in combination with modest
technical replication (two single arrays per patient
for the Affymetrix platform and two dye swap
replicates per patient for the spotted oligonucleotide
arrays). Additionally, we kept the protocols for
target preparation as comparable as possible. Since
the Affymetrix platform utilizes biotinylated cRNA
generated by in vitro transcription (IVT), we decided
to employ a linear, IVT-based amplification and
labelling protocol for the spotted oligonucleotide
arrays instead of the usual dye-labelling by reverse
transcription. Recently, we showed that this novel
procedure generates highly reproducible expression
profiles with down to 2 ng of starting material.’* We
could also demonstrate that the correlation of
expression ratios obtained with spotted oligonucleo-
tide arrays is higher between replicate amplified
sample pairs than between amplified and RT-
labelled sample pairs or replicate RT-labelled sam-
ple pairs. Accordingly, one can expect that consis-
tent target amplification would also be beneficial,
if expression ratios are to be compared across
platforms. Comparative studies that do not account
for this consideration might introduce additional
systematic bias, resulting in reduced agreement
between platforms.

To match the probes from the two platforms, we
used accession numbers provided by Affymetrix

and Operon and mapped them to the current version
of the UniGene database. Although provided by
both manufacturers, transcript identifiers from the
RefSeq collection*'** were not chosen for matching
the platforms, since reference sequences can change
through consolidation of the database. Recently,
Mecham et al*®* showed that up to 50% of Affymetrix
probes do not have a matching sequence in the
current version of RefSeq. Despite these considera-
tions, platform matching by RefSeq identifiers
yielded approximately similar and partly even
improved results in terms of cross-platform correla-
tion (9922 genes could be assigned as represented on
both platforms, correlations of unfiltered log,-ratios
were r=0.66 - r=0.81; data not shown). Evolution
of the UniGene database (accession numbers that
were removed due to misalignment or retraction by
their submitters; UniGene clusters that were retired
as they could be joined or split) and the associated
loss of cross-references may also explain why we
identified less genes common to both array types
than previously reported by Barczak et al.'® We
also decided against matching by GenBank acces-
sion numbers, since corresponding probes and
probe sets can be annotated by different accession
numbers of the same UniGene, causing this proce-
dure to exclude large amounts of potentially useful
information.
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Table 6 EASE overrepresentation analysis of the genes listed in Table 5
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System?* Gene category” List hits® List total® Population hits® Population total' EASE score® LH in PH (%)" LH in A exp (%)
Affymetrix

GO cellular component Extracellular matrix 6 34 55 2348 0.00084 10.91 14.63
GO molecular function Extracellular matrix structural constituent 4 37 14 2410 0.0010 28.57 9.76
GO biological process  Cell adhesion 6 37 99 2386 0.015 6.06 14.63
GO biological process Lipid metabolism 6 37 112 2386 0.025 5.36 14.63
GO biological process Lipid biosynthesis 4 37 44 2386 0.027 9.09 9.76
GO biological process  Cellular lipid metabolism 5 37 78 2386 0.028 6.41 12.20
GO cellular component Endoplasmic reticulum 5 34 99 2348 0.048 5.05 12.20
GO cellular component Extracellular matrix (sensu Metazoa) 3 34 26 2348 0.050 11.54 7.32
GO biological process Fatty acid metabolism 3 37 26 2386 0.057 11.54 7.32
GO biological process  Steroid metabolism 3 37 27 2386 0.061 11.11 7.32
GO molecular function Extracellular matrix structural constituent c. t. s.* 2 37 5 2410 0.073 40.00 4.88
GO cellular component Extracellular region 4 34 75 2348 0.086 5.33 9.76
GO cellular component Collagen 2 34 7 2348 0.094 28.57 4.88
Operon’

GO cellular component Extracellular matrix 7 45 55 2348 0.00045 12.73 13.46
GO molecular function Extracellular matrix structural constituent 4 48 14 2410 0.0022 28.57 7.69
GO molecular function Cation binding 10 48 192 2410 0.010 5.21 19.23
GO molecular function Metal ion binding 10 48 225 2410 0.027 4.44 19.23
GO molecular function Ion binding 10 48 225 2410 0.027 4.44 19.23
GO biological process  Cell adhesion 6 44 99 2386 0.031 6.06 11.54
GO molecular function Calcium ion binding 6 48 104 2410 0.049 5.77 11.54
GO cellular component Extracellular region 5 45 75 2348 0.050 6.67 9.62
GO molecular function Scavenger receptor activity 2 48 3 2410 0.057 66.67 3.85
GO cellular component Extracellular 5 45 79 2348 0.058 6.33 9.62
GO cellular component Extracellular matrix (sensu Metazoa) 3 45 26 2348 0.084 11.54 5.77
GO biological process  Organismal physiological process 8 44 214 2386 0.085 3.74 15.38
GO cellular component Golgi apparatus 5 45 93 2348 0.094 5.38 9.62
GO molecular function Extracellular matrix structural constituent c. t. s.* 2 48 5 2410 0.094 40.00 3.85

#System: the system of categorizing genes, in this case the GO classification type.

PGene category: the specific category of genes within the classification system, in this case the GO category of the superordinate GO classification type (different levels are possible).
CList hits (LH): number of genes in the list of differentially expressed genes that belong to the respective GO category.

dList total: number of differentially expressed genes that could be annotated within the respective GO classification system.

®Population hits (PH): number of genes in the list of all analyzed genes (n=2861) belonging to the respective GO category.

fPopulation total: number of analyzed genes with annotation data in the respective GO classification system.

8EASE score: The upper bound of the distribution of Jackknife Fisher exact probabilities given the LH, List Total, PH and Population Total. Categories with the lowest EASE score are significantly
overrepresented in the list of differentially expressed genes.

BLH in PH: percentage of differentially expressed genes belonging to the respective category in the group of all analyzed genes in this category.
'LH in A exp: percentage of differentially expressed genes belonging to the respective category in the group of all differentially expressed genes.
IDifferentially expressed genes from each platform were analyzed separately.

Kets.: conferring tensile strength.
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Figure 6 Comparison of relative gene expression for the genes OSF2, GMDS, TMPRSS2 and BGN. Expression ratios were determined for
tumor vs control tissue of the indicated patients, using either Affymetrix GeneChip arrays (a, b), Operon long oligonucleotide arrays (c) or
real-time quantitative PCR analysis (d). Affymetrix ratios were either normalized by variance stabilization (a) or the MAS5 algorithm (b).

When comparing unfiltered, log,-transformed ex-
pression ratios of individual patients, obtained with
either GeneChip short oligonucleotide arrays or
spotted long oligonucleotide arrays, we detected
considerable variations in the degree of correlation
(Figure 2). As reported previously,'*** these correla-
tions improved after the exclusion of probes and
probe sets associated with low signal intensities.
This observation might, at least in part, be attributed
to variations in the performance of individual array
experiments.

Systematic bias adjustment by DWD could further
improve the correlations between expression ratios
(Table 4). DWD is an advanced method for the
adjustment of various systematic differences across
microarray experiment subpopulations, including
sample source, batch and platform effects,?” which
facilitates the merging of different data sets. DWD
uses an approach similar to that of support vector
machines (SVM),*® but delivers improved perfor-
mance in the context of high-dimensional, low
sample size (HDLSS) data such as those obtained
by microarray analyses. Both methods aim at finding
a hyperplane in high-dimensional space, which
separates defined subpopulations of data as com-
pletely as possible. The essential difference is that,
while SVM tries to maximize the minimum distance

(margin) of all the data to the separating plane, DWD
works by maximizing the sum of the inverse
distances. In this way, all data points have an
influence on the result (optimized position of the
hyperplane), and data piling at the margins is
avoided, a problem associated with the minimum
distance criterion of SVM. After determination of
the DWD direction vector, all data points of each
subpopulation are projected onto the direction given
by this vector. Finally, data points from each
subpopulation are shifted in the DWD direction by
subtracting the DWD direction vector multiplied by
their projected means, thereby effectively removing
systematic variation while preserving any variation
in the DWD direction not caused by systematic
effects. Applied to our data, the DWD approach
clearly and consistently improved cross-platform
correlations while shifting the slopes of correspond-
ing regression lines towards 1 (Table 4). The latter
effect was minimal in case both data sets had been
normalized by the same algorithm (vsn), as this
procedure not unexpectedly yielded slopes closest
to one even before DWD. A slope close to one
implies that genes are more likely to yield similar
results (regardless of differential expression) on both
of the investigated platforms. Further improvements
of DWD performance can be anticipated for more
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extensive data sets, and we are confident that this
method could greatly enhance agreement in future
comparative studies.

Our goal was to compare reliable measurements
from both systems, both of which can be regarded as
detecting overlapping but different subsets of the
actual set of differentially expressed genes. This was
confirmed by EASE overrepresentation analysis,*
which revealed that some of the differentially
expressed genes could be assigned to the same
‘theme’ on both platforms, whereas others were
exclusive to one of the platforms (Table 6). On each
array system, approximately 50 genes were con-
sistently and repeatedly scored as differentially
expressed, and the intersection of these groups
contained 21 common genes (Figure 4a). The
majority of genes restricted to one of the platforms
showed no sufficient degree and/or significance, but
at least the same direction of regulated expression
on the other platform (Figure 4b). Therefore, it does
not matter if a clinical study uses Affymetrix or
Operon long oligonucleotide arrays, as long as these
are used consistently and combined with high
quality control standards throughout the whole
investigation.

For a subset of genes, we verified microarray-
derived expression ratios by RQ-PCR and found
good qualitative agreement between the two array
platforms and the PCR-based method (Figure 6).

We have shown that, overall, expression profiles
obtained with either long (Operon) or multiple short
(Affymetrix) oligonucleotide microarrays display a
reasonable correlation, with variable concordance of
individual genes. Based on patient samples, we
obtained results that are in good agreement with
previous studies that utilized cell line-derived RNA.
Projecting these findings to a larger series of array
experiments, one could expect to obtain similar
albeit not identical results, concerning, for example,
a hierarchical clustering or a gene expression
signature, with either of the two investigated plat-
forms. On the level of individual genes and
quantitative precision, however, our results reaffirm
that microarrays have to be considered a screening
technology and that their data should be regarded
with caution. This should be kept in mind particu-
larly when comparing data from different array
platforms. Recently, important progress has been
made to facilitate this transfer of information.
Guidelines provided by the ‘Microarray Gene Ex-
pression Data Society (MGED)’ (http://www.mged.
org), which developed the ‘Minimum Information
About a Microarray Experiment (MIAME)’ specifica-
tions,*® assist researchers in the annotation of their
microarray experiments. Further improvement is
provided by public microarray repositories, which
facilitate the publication and sharing of properly
annotated gene expression data. Statistical methods
like DWD?” can further improve the comparability of
microarray data sets, since systematic biases arising
from platform-specific parameters, such as measure-
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ment precision (reproducibility), accuracy (regard-
ing the ‘true’ values), specificity and sensitivity or
differences in protocol performance, can be properly
weighted and adjusted accordingly. The utility of
future array studies could further improve if the
‘External RNA Control Consortium (ERCC)’ is
successful in its effort to standardize controls for
the calibration of microarray experiments. But
ultimately, meaningful comparison, translation and
integration of expression data will be impaired as
long as industrial standards are missing for the
production of arrays as well as for the design of array
probes.
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