Letter | Published:

Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor

Abstract

FLOWERcolour is determined primarily by the production of pigments, usually anthocyanins or carotenoids, but the shade and intensity of the colour are often changed by other factors such as vacuolar compounds, pH and metal ions1, 2. Pigmentation can also be affected by the shape of epidermal cells, especially those facing prospective pollinators3,4. A conical shape is believed to increase the proportion of incident light that enters the epidermal cells, enhancing light absorption by the floral pigments, and thus the intensity of their colour. We have identified a gene (mixta) that affects the intensity of pigmentation of epidermal cells in Antirrhinum majuspetals. The cells of the corolla lobes fail to differentiate into their normal conical form in mixta mutants. We have cloned the mixta gene by transposon tagging; its sequence reveals that it encodes a Myb-related protein that probably participates in the transcriptional control of epidermal cell shape.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Brouillard, R. The Flavonoids (ed. Harbourne, J. B.) 525–538 (Chapman Hall, London, 1988).

  2. 2

    Chuck, G. et al. Plant Cell 5, 371–378 (1993).

  3. 3

    Kay, Q. O. N., Daoud, H. S. & Stirton, C. H. Bot. J. Linn. Soc. 83, 57–84 (1981).

  4. 4

    Kay, Q. Plants Today July-August issue, 109–114 (1988).

  5. 5

    Stubbe, H. Genetik und Zytologie von Antirrhinum L sect. Antirrhinum (VEB Gustav Fischer, Jena, 1966).

  6. 6

    Luo, D., Caen, E. S., Doyle, S. & Carpenter, R. Plant J. 1, 59–69 (1991).

  7. 7

    Avila, J., Nieto, C., Canas, L., Benito, M. J. & Paz-Ares, J. Plant J. 3, 553–562 (1993).

  8. 8

    Jackson, D., Culianez-Macia, F., Prescott, A., Roberts, K. & Martin, C. Plant Cell, 3, 115–125 (1991).

  9. 9

    Goff, S. A., Cone, K. C. & Fromm, M. E. Genes Dev. 5, 298–309 (1991).

  10. 10

    Paz-Ares, J., Ghosal, D., Wienand, V., Peterson, P. A. & Saedler, H. EMBO J., 6, 3553–3558 (1987).

  11. 11

    Grotewold, E., Athma, P. & Peterson, T. Proc. natn. Acad. Sci. U.S.A. 88, 4587–4591 (1991).

  12. 12

    Oppenheimer, D. G., Herman, P. L., Sivakumaran, S., Esch, J. & Marks, M. D. Cell 67, 483–493 (1991).

  13. 13

    Marks, M. D. & Feldmann, K. A. Plant Cell 1, 1043–1050 (1989).

  14. 14

    Hülskamp, M., Miséra, S. & Jürgens, G. Cell 76, 555–565 (1994).

  15. 15

    Kevan, P. G. & Lane, M. A. Proc. natn. Acad. Sci. U.S.A. 82, 4750–4752 (1985).

  16. 16

    Sommer, H. et al. EMBO J. 9, 605–613 (1990).

  17. 17

    Martin, C., Carpenter, R., Sommer, H., Saedler, H. & Caen, E. S. EMBO J. 4, 1625–1630 (1985).

  18. 18

    Lassner, M. W., Peterson, P. & Yoder, J. I. Plant molec. Biol. Rep. 7, 116–128 (1989).

  19. 19

    Smith, A. M. & Woolhouse, H. W. Planta 159, 570–578 (1983).

  20. 20

    Plaskitt, K. A. et al. Molec. Plant Microbe Interact. 1, 10–16 (1988).

  21. 21

    Coen, E. S., Carpenter, R. & Martin, C. Cell 47, 285–296 (1986).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.