Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor

Abstract

FLOWERcolour is determined primarily by the production of pigments, usually anthocyanins or carotenoids, but the shade and intensity of the colour are often changed by other factors such as vacuolar compounds, pH and metal ions1, 2. Pigmentation can also be affected by the shape of epidermal cells, especially those facing prospective pollinators3,4. A conical shape is believed to increase the proportion of incident light that enters the epidermal cells, enhancing light absorption by the floral pigments, and thus the intensity of their colour. We have identified a gene (mixta) that affects the intensity of pigmentation of epidermal cells in Antirrhinum majuspetals. The cells of the corolla lobes fail to differentiate into their normal conical form in mixta mutants. We have cloned the mixta gene by transposon tagging; its sequence reveals that it encodes a Myb-related protein that probably participates in the transcriptional control of epidermal cell shape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brouillard, R. The Flavonoids (ed. Harbourne, J. B.) 525–538 (Chapman Hall, London, 1988).

    Book  Google Scholar 

  2. Chuck, G. et al. Plant Cell 5, 371–378 (1993).

    Article  CAS  Google Scholar 

  3. Kay, Q. O. N., Daoud, H. S. & Stirton, C. H. Bot. J. Linn. Soc. 83, 57–84 (1981).

    Article  CAS  Google Scholar 

  4. Kay, Q. Plants Today July-August issue, 109–114 (1988).

  5. Stubbe, H. Genetik und Zytologie von Antirrhinum L sect. Antirrhinum (VEB Gustav Fischer, Jena, 1966).

    Google Scholar 

  6. Luo, D., Caen, E. S., Doyle, S. & Carpenter, R. Plant J. 1, 59–69 (1991).

    Article  CAS  Google Scholar 

  7. Avila, J., Nieto, C., Canas, L., Benito, M. J. & Paz-Ares, J. Plant J. 3, 553–562 (1993).

    Article  CAS  Google Scholar 

  8. Jackson, D., Culianez-Macia, F., Prescott, A., Roberts, K. & Martin, C. Plant Cell, 3, 115–125 (1991).

    Article  CAS  Google Scholar 

  9. Goff, S. A., Cone, K. C. & Fromm, M. E. Genes Dev. 5, 298–309 (1991).

    Article  CAS  Google Scholar 

  10. Paz-Ares, J., Ghosal, D., Wienand, V., Peterson, P. A. & Saedler, H. EMBO J., 6, 3553–3558 (1987).

    Article  CAS  Google Scholar 

  11. Grotewold, E., Athma, P. & Peterson, T. Proc. natn. Acad. Sci. U.S.A. 88, 4587–4591 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Oppenheimer, D. G., Herman, P. L., Sivakumaran, S., Esch, J. & Marks, M. D. Cell 67, 483–493 (1991).

    Article  CAS  Google Scholar 

  13. Marks, M. D. & Feldmann, K. A. Plant Cell 1, 1043–1050 (1989).

    Article  CAS  Google Scholar 

  14. Hülskamp, M., Miséra, S. & Jürgens, G. Cell 76, 555–565 (1994).

    Article  Google Scholar 

  15. Kevan, P. G. & Lane, M. A. Proc. natn. Acad. Sci. U.S.A. 82, 4750–4752 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Sommer, H. et al. EMBO J. 9, 605–613 (1990).

    Article  CAS  Google Scholar 

  17. Martin, C., Carpenter, R., Sommer, H., Saedler, H. & Caen, E. S. EMBO J. 4, 1625–1630 (1985).

    Article  CAS  Google Scholar 

  18. Lassner, M. W., Peterson, P. & Yoder, J. I. Plant molec. Biol. Rep. 7, 116–128 (1989).

    Article  CAS  Google Scholar 

  19. Smith, A. M. & Woolhouse, H. W. Planta 159, 570–578 (1983).

    Article  CAS  Google Scholar 

  20. Plaskitt, K. A. et al. Molec. Plant Microbe Interact. 1, 10–16 (1988).

    Article  Google Scholar 

  21. Coen, E. S., Carpenter, R. & Martin, C. Cell 47, 285–296 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, Ki., Glover, B., Linstead, P. et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664 (1994). https://doi.org/10.1038/369661a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369661a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing