Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion

Abstract

THE upright posture and obligatory bipedalism of modern humans are unique among living primates. The evolutionary history of this behaviour has traditionally been pursued by functional analysis of the postcranial skeleton and the preserved footprint trails of fossil hominids. Here we report a systematic attempt to reconstruct the locomotor behaviour of early hominids by looking at a major component of the mechanism for the unconscious perception of movement, namely by examining the vestibular system of living primates and early hominids. High-resolution computed tomography was used to generate cross-sectional images of the bony labyrinth. Among the fossil hominids the earliest species to demonstrate the modern human morphology is Homo erectus. In contrast, the semicircular canal dimensions in crania from southern Africa attributed to Australopithecus and Paranthropus resemble those of the extant great apes. Among early Homo specimens, the canal dimensions of Stw 53 are unlike those seen in any of the hominids or great apes, whereas those of SK 847 are modern-human-like

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Latimer, B. & Lovejoy, C. O. Am. J. phys. Anthrop. 78, 369–386 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Tuttle, R. H. in Laetoli: A Pliocene Site in Northern Tanzania (eds Leakey, M. D. & Harris, J. M.) 503–523 (Oxford Univ. Press, Oxford, 1987).

    Google Scholar 

  3. 3

    Susman, R. L., Stern, J. T. & Jungers, W. L. Folia Primatol. 43, 113–156 (1984).

    CAS  Article  Google Scholar 

  4. 4

    Hartwig-Scherer, S., & Martin, R. D. J. hum. Evol. 21, 439–499 (1991).

    Article  Google Scholar 

  5. 5

    Ten Kate, J. H., Barneveld, H. H. & Kuiper, J. W. J. exp. Biol. 53, 501–514 (1970).

    CAS  PubMed  Google Scholar 

  6. 6

    Oman, C. M., Marcus, E. N. & Curthoys, I. S. Acta Otolaryngol. 103, 1–13 (1987).

    CAS  Article  Google Scholar 

  7. 7

    Muller, M. & Verhagen, J. H. G. J. theor. Biol. 134, 473–501 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Blanks, R. H. I., Estes, M. S. & Markham, C. H. J. Neurophysiol. 38, 1250–1268 (1975).

    CAS  Article  Google Scholar 

  9. 9

    Goldberg, J. M. & Fernandez, C. J. Neurophysiol. 34, 635–660 (1971).

    CAS  Article  Google Scholar 

  10. 10

    Turkewitsch, B. G. Ztschr Anat. Entwicklungsgesch. 103, 551–608 (1934).

    Article  Google Scholar 

  11. 11

    Hadziselimovic, H. & Savkovic, L. J. Acta anat. 57, 306–315 (1964).

    CAS  Article  Google Scholar 

  12. 12

    Matono, S., Kubo, T., Matsunaga, T., Niemitz, C. & Günther, M. in Current Perspectives in Primate Biology (eds Taub, D.M. & King, F. A.) 122–129 (Van Nostrand Reinhold, New York, 1986).

    Google Scholar 

  13. 13

    Zonneveld, F. W. & Wind, J. in Hominid Evolution: Past, Present and Future (ed. Tobias, P. V.) 427–436 (Liss, New York, 1985).

    Google Scholar 

  14. 14

    Spoor, C.F. & Zonneveld, F. W. Cour. Forsch. Senckenberg 171, 251–256 (1994).

    Google Scholar 

  15. 15

    Muller, M. J. theor. Biol. 167, 239–256 (1994).

    Article  Google Scholar 

  16. 16

    Rose, M. D. Am. J. phys. Anthrop. 63, 371–378 (1984).

    CAS  Article  Google Scholar 

  17. 17

    Walker, A. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R.) 411–430 (Springer, Berlin, 1993).

    Google Scholar 

  18. 18

    Robinson, J. T. Early Hominid Posture and Locomotion (Univ. Chicago Press, Chicago, 1972).

    Google Scholar 

  19. 19

    Vrba, E. S. Am. J. phys. Anthrop. 51, 117–130 (1979).

    Article  Google Scholar 

  20. 20

    McHenry, H. M. J. hum. Evol. 15, 177–191 (1986).

    Article  Google Scholar 

  21. 21

    Hunt, K. D. J. hum. Evol. 26, 183–202 (1994).

    Article  Google Scholar 

  22. 22

    Wood, B. Nature 363, 587–588 (1993).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Susman, R. L. Am. J. phys. Anthrop. 79, 451–474 (1989).

    CAS  Article  Google Scholar 

  24. 24

    Johanson, D. C. et al. Nature 327, 205–209 (1987).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Walker, A. in Homo erectus: Papers in Honor of Davidson Black (eds Sigmon, B.A. & Cybulski, J.) 193–215 (Univ. Toronto Press, Toronto, 1981).

    Google Scholar 

  26. 26

    Clarke, R. J. in Hominid Evolution: Past, Present and Future (ed. Tobias, P. V.) 171–177 (Liss, New York, 1985).

    Google Scholar 

  27. 27

    Grine, F. E., Demes, B., Jungers, W. L. & Cole T. M. Am. J. phys. Anthrop. 92, 411–426 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Kimbel, W. H. & Rak, Y. in Species, Species Concepts, and Primate evolution (eds Kimbel, W. H. & Martin, L. B.) 461–484 (Plenum, New York, 1993).

    Google Scholar 

  29. 29

    Dean, M. C. & Wood, B. A. Am. J. phys. Anthrop. 59, 157–174 (1982).

    CAS  Article  Google Scholar 

  30. 30

    Spoor, C. F. thesis, Urecht Univ. 1993.

  31. 31

    Curthoys, I. S., Blanks, R. H. I. & Markham, C. H. J. Morph. 151, 1–16 (1977).

    CAS  Article  Google Scholar 

  32. 32

    Berg, W. Ztschr. Morph. Anthr. 5, 315–345 (1903).

    Google Scholar 

  33. 33

    Blanks, R. H. I., Curthoys, I. S., Bennett, M. L. & Markham, C. H. Brain Res. 340, 315–324 (1985).

    CAS  Article  Google Scholar 

  34. 34

    Gray, A. A. The Labyrinth of Animals (Churchill, London, 1907).

    Google Scholar 

  35. 35

    Ramprashad, F., Landolt, J. P., Money, K. E. & Laufer, J. Am. J. Anat. 169, 295–313 (1984).

    CAS  Article  Google Scholar 

  36. 36

    Fleagle, J. Primate Adaptation and Evolution (Academic, San Diego, 1988).

    Google Scholar 

  37. 37

    McHenry, H. Am. J. phys. Anthrop. 87, 407–431 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spoor, F., Wood, B. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994). https://doi.org/10.1038/369645a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing