Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insights into autoregulation from the crystal structure of twitchin kinase

Abstract

MANY protein kinases are self-regulated by an intrasteric mechanism where part of the enzyme's structure directly inhibits the active site1,2. This inhibitory structure is called a pseudosubstrate and specific regulators are required to remove it from the active site to allow substrates access. Removal of the pseudosubstrate sequence from members of the myosin light-chain kinase subfamily1, including twitchin kinase, activates them but it is not known whether the pseudosubstrate sequence binds to the active site. Native twitchin is a 753K protein (6,839 residues) located in muscle A-bands of the nematode Caenorhabditis elegans3,4 and because of its size has not been easy to study. We have determined the crystal structure, refined to 2.8 Å resolution, of a recombinant fragment (residues 5,890 to 6,262) of twitchin kinase3,4 that contains the catalytic core and a 60 residue carboxy-terminal tail. The C-terminal tail extends through the active site, wedged between the small and large lobes of the structure and making extensive contacts with the catalytic core which accounts for autoinhibition and provides direct support for the intrasteric mechanism of protein kinase regulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kemp, B. E. & Pearson, R. B. Biochim. biophys. Acta 1094, 67–76 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Kemp, B. E. et al. in Protein Kinases: Frontiers in Molecular Biology (ed. Woodgett, J.) (Oxford Univ. Press, London, in the press).

  3. 3

    Benian, G. M., Kiff, J. E., Neckleman, N., Moerman, D. G. & Waterson, R. H. Nature 342, 45–50 (1989).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Benian, G. M., L'Hernault, S. W. & Morris, M. E. Genetics 134, 1097–1104 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Waterston, R. H., Thomson, J. N. & Brenner, S. Devl Biol. 77, 271–302 (1980).

    CAS  Article  Google Scholar 

  6. 6

    Knighton, D. R. et al. Science 253, 407–414 (1991).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Knighton, D. R. et al. Science 253, 414–420 (1991).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Bossemeyer, D., Engh, R. A., Kinzel, V., Ponstingl, H. & Huber, R. EMBO J. 12, 849–859 (1993).

    CAS  Article  Google Scholar 

  9. 9

    De Bondt, H. L. et al. Nature 363, 595–602 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Knighton, D. R. et al. Acta crystallogr. D49, 357–361 (1993).

    CAS  Google Scholar 

  11. 11

    Olah, G. A., Mitchell, R. D., Sosnich, T. R., Walsh, D. A. & Trewhella, J. Biochemistry 32, 3649–3657 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Gerstein, M. et al. J. molec. Biol. 234, 357–372 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Knowles, J. R. Nature 350, 121–124 (1991).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Zheng, J. et al. Biochemistry 32, 2154–2161 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Hu, S.-H. et al. J. molec. Biol. 236, 1259–1261 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Vellieux, F. M. D. et al. Proc. natn. Acad. Sci. U.S.A. 90, 2355–2359 (1993).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Jones, T. A. J. appl. Crystallogr. 11, 268–274 (1978).

    CAS  Article  Google Scholar 

  19. 19

    Brunger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hendrickson, W. A. & Konnert, J. M. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (Indian Academy of Science, Int. Union of Crystallography, Bangalore, 1980).

    Google Scholar 

  21. 21

    Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  22. 22

    Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Zheng, J. et al. Acta crystallogr. D49, 362–365 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, SH., Parker, M., Yi Lei, J. et al. Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369, 581–584 (1994). https://doi.org/10.1038/369581a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing