Abstract
NATURALLY occurring membrane channels and pores are formed from a large family of diverse proteins, peptides and organic secon-dary metabolites whose vital biological functions include control of ion flow, signal transduction, molecular transport and produc-tion of cellular toxins. But despite the availability of a large amount of biochemical information about these molecules1, the design and synthesis of artificial systems that can mimic the bio-logical function of natural compounds remains a formidable task2–12. Here we present a simple strategy for the design of artifi-cial membrane ion channels based on a self-assembled cylindrical β-sheet peptide architecture13. Our systems—essentially stacks of peptide rings—display good channel-mediated ion-transport activ-ity with rates exceeding 107 ions s−1, rivalling the performance of many naturally occurring counterparts. Such molecular assemblies should find use in the design of novel cytotoxic agents, membrane transport vehicles and drug-delivery systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide
Nature Nanotechnology Open Access 22 November 2021
-
Insights on the supramolecular polymorphism of poly(γ-benzyl-L-glutamate) rod-like peptides from atomistic molecular dynamics simulations
Journal of Materials Science Open Access 26 July 2021
-
Rapid discovery of self-assembling peptides with one-bead one-compound peptide library
Nature Communications Open Access 23 July 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Hille, B. Ionic Channels of Excitable Membranes 2nd edn. (Sinauer Associates, Sunderland, 1992).
Montal, M. FASEB J. 4, 2623–2635 (1990).
Akerfeldt, K. S., Lear, J. D., Wasserman, Z. R., Chung, L. A. & DeGrado, W.F. Acc. Chem. Res. 26, 191–197 (1993).
Fyles, T. M., James, T. D. & Kaye, K. C. J. Am. chem. Soc. 115, 12315–12321 (1993).
Roks, M. F. M. & Nolte, R. J. M. Macromolecules 25, 5398–5407 (1992).
Pregel, M. J., Jullien, L. & Lehn, J.-M. Angew. Chem. 104, 1695 (1992); Angew. Chem. int. Edn engl. 31, 1637–1640 (1992).
Anzai, K. et al. Biochim. biophys. Acta 1064, 256–266 (1991).
Grove, A., Mutter, M., Rivier, J. E. & Montal, M. J. Am. chem. Soc. 115, 5919–5924 (1993).
Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Science 262, 1019–1024 (1993).
Montal, M., Montal, M. S. & Tomich, J. M. Proc. natn. Acad. Sci. U.S.A. 87, 6929–6933 (1990).
Fuhrhop, J.-H., Liman, U. & Koesling J. Am. chem. Soc. 110, 6840–6845 (1988).
Nakano, A., Xie, Q., Mallen, J. V., Echegoyen, L. & Gokel, G. W. J. Am. chem. Soc. 112, 1287–1289 (1990).
Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Kazanovich, N. Nature 366, 324–327 (1993).
Khazanovich, N., Granja, J. R., McRee, D. E., Milligan, R. A. & Ghadiri, M. R. J. Am. Chem. Soc. (in the press).
Engelman, D. M. & Steitz, T. A. Cell 23, 411–422 (1981).
Rovero, P., Quartara, L. & Fabbri, G. Tetrahedron Lett. 32, 2639–2642 (1991).
Allen, L. C. Proc. natn. Acad. Sci. U.S.A. 72, 4701–4705 (1975).
Engelman, D. M., Steitz, T. A. & Goldman, A. A. Rev. Biophys. biophys. Chem. 15, 321–353 (1986).
Nabedryk, E., Gingold, M. P. & Breton, J. Biophys. J. 38, 243–249 (1982).
Carmichael, V. E. et al. J. Am. chem. Soc. 111, 767–769 (1989).
Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. & Hagins, W. A. Science 195, 489–492 (1977).
Jayasuriya, N., Bosak, S. & Regen, S. L. J. Am. chem,. Soc. 112, 5844–5850 (1990).
Clement, N. R. & Gould, J. M. Biochemistry 20, 1539–1543 and 1544–1548 (1981).
Suarez-Isla, B. A., Lindstrom, W. K. & Montal, M. Biochemistry 22, 2319–2323 (1983).
Läuger, P. Angew. Chem. 97, 939–959 (1985); Angew. Chem. int. Edn engl. 24, 905–923 (1985).
Bamberg, E. & Laüger, P. Biochim. biophys. Acta 367, 127–133 (1974).
Szoka, F. & Papahadjopoulos, D. Proc. natn. Acad. Sci. U.S.A. 75, 4194–4198 (1978).
Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. & Papahadjopoulos, D. Biochim. biophys. Acta 557, 9–23 (1979).
New, R. R. C., (ed.) Liposomes (Oxford Univ. Press, 1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ghadiri, M., Granja, J. & Buehler, L. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369, 301–304 (1994). https://doi.org/10.1038/369301a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/369301a0
This article is cited by
-
Self-assembled Supramolecular Artificial Transmembrane Ion Channels: Recent Progress and Application
Chemical Research in Chinese Universities (2023)
-
A General Approach for Synthesis of Circularly Assembled Supramolecular Polymers by Means of Region-confined Amphiphilic Supramolecular Polymerization
Chemical Research in Chinese Universities (2023)
-
De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide
Nature Nanotechnology (2022)
-
Rapid discovery of self-assembling peptides with one-bead one-compound peptide library
Nature Communications (2021)
-
Liquid-liquid phase separation and self-assembly of a lysine derivative Fmoc-L-lysine in water-DMSO mixtures
Polymer Journal (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.