Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of activation-defective TBP mutations on transcription initiation in yeast

Abstract

TRANSCRIPTION initiation by RNA polymerase II is effected by an ordered series of general factor interactions with core promoter elements (leading to basal activity) and further regulated by gene-specific factors acting from distal elements1. Both the general factor TFIID (refs 2,3), including the constituent TBP (TATA-binding polypeptide)4–7 and associated factors8, and the interacting factor TFIIB (refs 9–11) have been implicated as targets for various activators. Towards an understanding of the basis for activator function, including the multiplicity of TBP interactions, we have now identified mutations in yeast TBP that selectively block activator (GAL4-VP16)-dependent but not basal transcription. We further show an effect of GAL4-VP16 on TFIIB recruitment to early preinitiation complexes, and that recruitment is disrupted by TBP mutations that impair its interactions with VP16 (L114K), TFIIB (L189K) or an unidentified component (K211L). Thus, GAL4-VP16 function seems to involve both direct interactions with TBP and a corresponding induction (or stabilization) of an activation-specific TBP–TFIIB–promoter complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roeder, R. G. Trends biochem. Sci. 16, 402–427 (1991).

    Article  CAS  Google Scholar 

  2. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  3. Workman, J. L., Abmayr, S. M., Cromlish, W. A. & Roeder, R. G. Cell 55, 211–219 (1988).

    Article  CAS  Google Scholar 

  4. Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. J. & Greenblatt, J. Nature 351, 588–590 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Lee, W. S., Kao, C. C., Bryant, G. O., Liu, X. & Berk, A. J. Cell 67, 365–376 (1991).

    Article  CAS  Google Scholar 

  6. Horikoshi, N. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5124–5128 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Lieberman, P. M. & Beck, A. J. Genes Dev. 5, 2441–2454 (1991).

    Article  CAS  Google Scholar 

  8. Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A. & Tjian, T. Cell 75, 519–530 (1993).

    Article  CAS  Google Scholar 

  9. Lin, Y.-S. & Green, M. R. Cell 64, 971–991 (1991).

    Article  CAS  Google Scholar 

  10. Choy, B. & Green, M. R. Nature 366, 531–536 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Kim, T. K. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. (in the press).

  12. Flanagan, P. M., Tschochner, H., Kelleher, R. J. III, Sayre, M. H. & Kornberg, R. D. Proc. natn. Acad. Sci. U.S.A. 89, 7659–7663 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Yamamoto, T. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2844–2848 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Meisterernst, M. & Roeder, R. G. Cell 67, 557–567 (1991).

    Article  CAS  Google Scholar 

  15. Lee, D. K., DeJong, J., Hashimoto, S., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 12, 5189–5196 (1992).

    Article  CAS  Google Scholar 

  16. Nikolov, D. B. et al. Nature 360, 40–46 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Nature 365, 512–520 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Keaveney, M., Berkenstam, A., Feigenbutz, M., Vriend, G. & Stunnenberg, H. G. Nature 365, 562–566 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Ptashne, M. A Genetic Switch, Gene Control and Phage 1 (Cell Press and Blackwell Scientific, Cambridge, 1986).

    Google Scholar 

  20. Schena, M., Freedman, L. P. & Yamamoto, K. R. Genes Dev. 3, 1590–1601 (1989).

    Article  CAS  Google Scholar 

  21. Kassavetis, G. A. et al. Cell 71, 1055–1064 (1992).

    Article  CAS  Google Scholar 

  22. Hahn, S. Nature 363, 672–673 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Flanagan, P. M., Kellerher, R. J. III, Sayre, M. H., Tschochner, H. & Kornberg, R. D. Nature 350, 436–438 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Berger, S. L. et al. Cell 70, 251–265 (1992).

    Article  CAS  Google Scholar 

  25. Kim, T. K. & Roeder, R. G. J. biol. Chem. 268, 20866–20869 (1993).

    CAS  PubMed  Google Scholar 

  26. Kim, T. K. & Roeder, R.G. Nucleic Acids Res. 22, 251 (1993).

    Article  Google Scholar 

  27. Chasman, D. I., Leatherwood, M. C., Carey, M., Ptashne, M. & Kornberg, R. D. Molec. cell. Biol. 9, 4746–4749 (1989).

    Article  CAS  Google Scholar 

  28. Kim, T. K. & Roeder, R. G. J. biol. Chem. 269, 4891–4894 (1993).

    Google Scholar 

  29. Auble, D. T. & Hahn, S. Genes Dev. 7, 844–856 (1993).

    Article  CAS  Google Scholar 

  30. Ranish, J. A., Lane, W. S. & Hahn, S. Science 255, 1127–1129 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Hashimoto, S., Kelleher, R. et al. Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature 369, 252–255 (1994). https://doi.org/10.1038/369252a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369252a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing