Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A chemically and electrochemically switchable molecular shuttle


THE developing field of nanotechnology has generated wide interest across a broad range of scientific disciplines1. In particular, the realization of nanoscale switching devices might have far-reaching implications for computing and biomimetic engineering2–4. But miniaturization of existing semiconductor technology may not be the best approach to the fabrication of structures whose dimensions are smaller than the wavelength of the radiation used in optical lithography and etching techniques5. The approach observed in the natural world, whereby nanostructures are built up through the self-assembly6–9 of smaller molecular entities, holds substantial promise. Nature abounds with molecular switching devices which perform a variety of functions, such as the transport of metabolites across cell membranes or the signalling of nerve impulses. These processes are commonly controlled by stimuli such as changes in ion concentrations and electrical potentials. Here we report the synthesis of a supramolecular structure (compound 1-[PF6]4, Fig. 1A) that can be reversibly switched between two states by proton concentration changes or by electrochemical means. The super-molecule is a rotaxane comprising a molecular ring threaded on an axle containing two ‘docking points’. We can effect controlled switching of the ring from one of these positions to the other. We use 1H NMR and ultra violet/visible spectroscopy to characterize the dynamics of the bead's movement along the thread before and after switching.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Crandall, B. C. & Lewis, J. (eds) Nanotechnology (MIT Press, Cambridge, 1992).

    Google Scholar 

  2. Hameroff, S. R. Ultimate Computing: Biomolecular Consciousness and Nanotechnology (Elsevier, Amsterdam, 1987).

    Google Scholar 

  3. Drexler, E. Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York, 1992).

    Google Scholar 

  4. Ball, P. Nature 362, 123 (1993).

    Article  ADS  Google Scholar 

  5. Radelaar, S. in Physics and Technology of Semiconductor Quantum Devices (eds Ploog, K. H. & Tapfer, L.) 27–51 (Springer, Berlin, 1993).

    Book  Google Scholar 

  6. Lindsey, J. S. New J. Chem. 15, 153–180 (1991).

    CAS  Google Scholar 

  7. Wnitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    Article  ADS  Google Scholar 

  8. Philip, D. & Stoddart, J. F. Synlett 445–458 (1991).

  9. Lehn, J.-M. Science 260, 1762–1763 (1993).

    Article  CAS  ADS  Google Scholar 

  10. Schill, G. Catenanes, Rotaxanes, and Knots (Academic, New York, 1971).

    Google Scholar 

  11. Anelli, P. L. et al. J. Am. chem. Soc. 114, 193–218 (1992).

    Article  CAS  Google Scholar 

  12. Córdova, E. et al. J. org. Chem. 58, 6550–6552 (1993).

    Article  Google Scholar 

  13. Dietrich-Buchecker, C. O. & Sauvage, J.-P. Chem. Rev. 87, 795–810 (1987).

    Article  CAS  Google Scholar 

  14. Chambron, J.-C., Heitz, V. & Sauvage, J.-P. J. Am. chem. Soc. 115, 12378–12384 (1993).

    Article  CAS  Google Scholar 

  15. Harada, A., Li, J. & Kamachi, M. Nature 364, 516–518 (1993).

    Article  CAS  ADS  Google Scholar 

  16. Harada, A., Li, J. & Kamachi, M. Nature 356, 325–327 (1992).

    Article  CAS  ADS  Google Scholar 

  17. Venkata, T., Rao, S. & Lawrence, D. S. J. Am. chem. Soc. 112, 3614–3615 (1990).

    Article  Google Scholar 

  18. Isnin, R. & Kaifer, A. E. J. Am. chem. Soc. 113, 8188–8190 (1991).

    Article  CAS  Google Scholar 

  19. Wylie, R. S. & Macartney, D. H. J. Am. chem. Soc. 114, 3136–3138 (1992).

    Article  CAS  Google Scholar 

  20. Wenz, G., Von der Bey, E. & Schmidt, L. Angew. Chem. int. Edn. engl. 31, 783–785 (1992).

    Article  Google Scholar 

  21. Wenz, G. & Keller, B. Angew. Chem. int. Edn. engl. 31, 197–199 (1992).

    Article  Google Scholar 

  22. Odell, B. et al. Angew. Chem. int. Edn. engl. 27, 1547–1550 (1988).

    Article  Google Scholar 

  23. Reddington, M. V., Spencer, N. & Stoddart, J. F. in Inclusion Phenomena and Molecular Recognition (ed. Atwood, J.) 41–48 (Plenum, New York, 1990).

    Book  Google Scholar 

  24. Stoddart, J. F. Chem. Aust. 59, 576–577, and 581 (1992).

    CAS  Google Scholar 

  25. Anelli, P. L., Spencer, N. & Stoddart, J. F. J. Am. chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  Google Scholar 

  26. Ashton, P. R., Bissell, R. A., Spencer, N., Stoddart, J. F. & Tolley, M. S. Synlett 914–918, and 923–926 (1992).

    Article  Google Scholar 

  27. Vögtle, F., Müller, W. M., Müller, U., Bauer, M. & Rissanen, K. Angew. Chem. int. Edn. engl. 32, 1295–1297 (1993).

    Article  Google Scholar 

  28. Ballardini, R. et al. Angew. Chem. int. Edn. engl. 32, 1301–1303 (1993).

    Article  Google Scholar 

  29. Benniston, A. C. & Harriman, A. Angew. Chem. int. Edn. engl. 32, 1459–1461 (1993).

    Article  Google Scholar 

  30. Ashton, P. et al. J. chem. Soc., chem. Commun. 177–180 (1994).

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bissell, R., Córdova, E., Kaifer, A. et al. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing