Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Taxol inhibits progression of congenital polycystic kidney disease

Abstract

POLYCYSTIC kidney diseases (PKD) are the most common hereditary diseases of the human kidney and account for ten per cent of patients requiring renal transplantation or dialysis. Renal cyst formation has been attributed to enhanced cell proliferation, unbalanced cell death, abnormal targeting of membrane proteins, aberrant kidney development and tubular obstruction, but there is no treatment that blocks the formation and enlargement of renal cysts. We have now developed an in vitro model of spontaneous cyst formation that distinguishes polycystic kidney epithelium from its normal counterpart. Inhibitors of DNA, RNA and protein synthesis did not prevent in vitro cyst formation, but this was reversibly inhibited by ouabain, amiloride and the microtubule-specific agents colchicine, vinblastine and taxol. The cpk mouse is a well-characterized recessive PKD model1–3 and we find that cpk/cpk mice develop PKD and die from uraemia by 4–5 weeks of age, but when treated weekly with taxol they survive for more than 200 days with minimal loss of renal function, show limited collecting-dust cyst enlargement, and attain adult size. Our results indicate that the microtubule cytoskeleton has a central role in the pathogenesis of PKD in cpk mice and that taxol may also be useful in treating human PKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell, E. S. & McFarland, E. Mouse Newsletter 56, 40 (1977).

    Google Scholar 

  2. Preminger, G. M., Koch, W. E., Fried, F. A., McFarland, E. & Murphy, E. M. J. J. Urol. 127, 556–560 (1982).

    Article  CAS  Google Scholar 

  3. Avner, E. D. et al. Pediat. Nephrol. 1, 587–596 (1987).

    Article  CAS  Google Scholar 

  4. Wilson, P. D., Schrier, R. W., Breckon, R. D. & Gabow, P. A. Kidney Int. 30, 371–378 (1986).

    Article  CAS  Google Scholar 

  5. Yang, A. H., Gould, K. J. & Oberley, T. D. In Vitro Cell Dev. Biol. 23, 34–46 (1987).

    Article  CAS  Google Scholar 

  6. Carone, F. A., Nakamura, S., Schumacher, B. S., Punyarit, P. & Bauer, K. D. Kidney Int. 35, 1351–1357 (1989).

    Article  CAS  Google Scholar 

  7. Valentich, J. D., Tchao, R. & Leighton, J. J. Cell Physiol. 100, 291–304 (1979).

    Article  CAS  Google Scholar 

  8. Mangoo, K. R. et al. FASEB J. 3, 2629–2632 (1989).

    Article  Google Scholar 

  9. Neufeld, T. K. et al. 41, 1222–1236 (1992).

  10. Fleming, T. P. & Johnson, M. H. A. Rev. cell. Biol. 4, 459–485 (1988).

    Article  CAS  Google Scholar 

  11. Brenner, B. M. Kidney Int. 23, 647–655 (1983).

    Article  CAS  Google Scholar 

  12. Schiff, P. & Horwitz, S. Proc. natn. Acad. Sci. U.S.A. 77, 1561–1565 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Gattone, V. H. et al. Lab. Invest. 59, 231–238 (1988).

    PubMed  Google Scholar 

  14. Cowley, B. D. J., Smardo, F. L. J., Grantham, J. J. & Calvert, J. P. Proc. natn. Acad. Sci. U.S.A. 84, 8394–8398 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Avner, E. D., Sweeney, W. E. J., Young, M. C. & Ellis, D. Pediat. Nephrol. 2, 210–218 (1988).

    Article  CAS  Google Scholar 

  16. Cowley, B., Chadwick, L., Grantham, J. & Calvert, J. J. Am. Soc. Neph. 1, 1048–1053 (1991).

    Google Scholar 

  17. Kelly, R. Cell 60, 5–7 (1990).

    Article  Google Scholar 

  18. Rogalski, A. A., Bergmann, J. E. & Singer, S. J. J. Cell Biol. 99, 1101–1109 (1984).

    Article  CAS  Google Scholar 

  19. Thyberg, J. & Moskalewski, S. Expl Cell Res. 159, 1–16 (1985).

    Article  CAS  Google Scholar 

  20. Lippincott-Schwartz, J. et al. Cell 60, 821–836 (1990).

    Article  CAS  Google Scholar 

  21. Bloom, T. Development 106, 159–171 (1989).

    CAS  PubMed  Google Scholar 

  22. Maro, R., Gueth-Hallonet, C. J. A. & Antony, C. Development Vol. 1, suppl. 1, 17–25 (1991).

    CAS  Google Scholar 

  23. Parczyk, K., Haase, W. & Kondor-Koch, C. J. biol. Chem. 264, 16837–16846 (1989).

    CAS  PubMed  Google Scholar 

  24. De Almeida, J. B. & Stow, J. L. Am. J. Physiol. 260, C691–C700 (1991).

    Article  CAS  Google Scholar 

  25. Wilson, P. D. et al. Am. J. Physiol. 260, F420–F430 (1991).

    Article  CAS  Google Scholar 

  26. Avner, E., Sweeney, W. & Nelson, W. Proc. natn. Acad. Sci. U.S.A. 89, 7447–7451 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Slot, C. Scand. J. Clin. Lab. Invest. 17, 381–387 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, D., Miao, S., Pelayo, J. et al. Taxol inhibits progression of congenital polycystic kidney disease. Nature 368, 750–753 (1994). https://doi.org/10.1038/368750a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing