Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production and transport of methane in oceanic particulate organic matter

Abstract

METHANE is an important component of the global carbon cycle1 and a potent greenhouse gas2,3. Surface ocean waters are typically supersaturated with dissolved methane relative to atmospheric equilibrium, presumably as a result of in situ microbial methane production4–8. Because methanogenic bacteria are strict anaerobes9and surface ocean waters are highly oxygenated, the observation of methane supersaturation has been termed the 'oceanic methane paradox'10. Although methanogenic bacteria have been isolated from oceanic particulate matter, faecal pellets and zooplankton11–14, no data are available on in situ rates of methane formation in these microenvironments. During a series of experiments in the North Pacific ocean, we have identified a previously unrecognized component of the oceanic methane cycle. We find that methane is associated with sinking particles, presumably as a dissolved constituent of the interstitial fluids of particulate biogenic materials, which exchanges with the water column as particles sink. This phenomenon provides a mechanism for the active transport in the water column of an otherwise passive, dissolved species. The particle-to-seawater methane flux that we measure is sufficient to replace all of the methane present in the upper water column in about 50 days and to produce the characteristic methane supersaturations in less than a month. We suggest that particulate production and transport may also be relevant to the redistribution and cycling of other bioreactive compounds in the marine environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martens, C. S. in Microbial Growth on C1 Compounds (eds Crawford, R. L. & Hanson, R. S.) 276–281 (Am. Soc. for Microbiology, Washington DC, 1984).

    Google Scholar 

  2. Tyler, S. C. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 7–38 (Am. Soc. for Microbiology, Washington DC, 1991).

    Google Scholar 

  3. Cicerone, R. J. & Oremland, R. S. Global Biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Brooks, J. M., Reid, D. F. & Bernard, B. B. J. geophys. Res. 86, 11029–11040 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Burke, R. A. Jr, Reid, D. F., Brooks, J. M. & Lavoie, D. M. Limnol. Oceanogr. 28, 19–32 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Lamontagne, R. A., Swinnerton, J. W., Linnenbom, V. J. & Smith, W. D. J. geophys. Res. 78, 5317–5324 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Scranton, M. I. & Brewer, P. G. Deep-Sea Res. 24, 127–138 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Traganza, E. D., Swinnerton, J. W. & Cheek, C. H. Deep-Sea Res. 26, 1237–1245 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Boone, D. R. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 57–70 (Am. Soc. for Microbiology, Washington DC, 1991).

    Google Scholar 

  10. Kiene, R. P. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 111–146 (Am. Soc. for Microbiology, Washington DC, 1991).

    Google Scholar 

  11. Bianchi, M., Marty, D., Teyssie, J.-L. & Fowler, S. W. Mar. Ecol. Prog. Ser. 88, 55–60 (1992).

    Article  ADS  Google Scholar 

  12. Sieburth, J. McN. in Microbes in the Sea (ed. Sleigh, M. A.) 11–38 (Ser. in Mar. Sci., Ellis Horwood, Chichester, 1987).

    Google Scholar 

  13. Oremland, R. S. Limnol. Oceanogr. 24, 1136–1141 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Marty, D. G. Limnol. Oceanogr. 38, 452–456 (1993).

    Article  Google Scholar 

  15. Swinnerton, J. W. & Linnenbom, V. J. J. Gas Chromatogr. 5, 570–573 (1967).

    Article  CAS  Google Scholar 

  16. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep-Sea Res. 34, 267–285 (1986).

    Article  ADS  Google Scholar 

  17. Laws, E. A., DiTullio, G. R., Betzer, P. R., Karl, D. M. & Carder, K. L. Deep-Sea Res. 36, 103–120 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep-Sea Res. 26, 97–108 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Karl, D. M. & Knauer, G. A. Oceanogr. Mag. 2, 32–35 (1989).

    Article  Google Scholar 

  20. Pace, M. L., Knauer, G. A., Karl, D. M. & Martin, J. H. Nature 325, 803–804 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Sieburth, J. McN. et al. Curr. Microbiol. 14, 285–293 (1987).

    Article  CAS  Google Scholar 

  22. Karl, D. M., Tilbrook, B. D. & Tien, G. Deep-Sea Res. 38, 1097–1126 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Dagg, M. J. & Walser, W. E. Jr, Limnol. Oceanogr. 31, 1066–1071 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Karl, D. M. & Knauer, G. A. Deep-Sea Res. 31, 221–243 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Smith, K. L. Jr, Williams, P. M. & Druffel, E. R. M. Nature 337, 724–726 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Grimalt, J. O., Simoneit, B. R. T., Gomez-Belinchon, J. I., Fischer, K. & Dymond, J. Nature 345, 147–150 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, D., Tilbrook, B. Production and transport of methane in oceanic particulate organic matter. Nature 368, 732–734 (1994). https://doi.org/10.1038/368732a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368732a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing