Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calmodulin interacts with amphiphilic peptides composed of all D-amino acids


CALMODULIN binds to amphiphilic, helical peptides of a variety of amino-acid sequences1–8. These peptides are usually positively charged, although there is spectroscopic evidence that at least one neutral peptide binds5. The complex between calmodulin and one of its natural target peptides, the binding site for calmodulin on smooth muscle myosin light-chain kinase (RS20)9, has been investigated by crystallography10 and NMR11–13 which have characterized the interactions between the ligand and the protein. From these data, it appears that the calmodulin-binding surface is ster-ically malleable and van der Waals forces probably dominate the binding. To explore further this apparently permissive binding, we investigated the chiral selectivity of calmodulin using synthesized analogues of melittin and RS20 that consisted of only D-amino acids. Fluorescence and NMR measurements show that D-melittin and D-RS20 both bind avidly to calmodulin, probably in the same general binding site as that for peptides having all i -amino acids. The calmodulin–peptide binding surface is therefore remarkably tolerant sterically. Our results suggest a potentially useful approach to the design of non-hydrolysable or slowly hydrolysable intracellular inhibitors of calmodulin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Erickson-Viitanen, S. & DeGrado, W. F. Meth. Enzym. 139, 455–478 (1987).

    CAS  Article  Google Scholar 

  2. 2

    O'Neil, K. T. & DeGrado, W. F. Trends biochem. Sci. 15, 59–64 (1990).

    CAS  Article  Google Scholar 

  3. 3

    Comte, M., Maulet, Y. & Cox, J. A. Biochem. J. 209, 269–272 (1983).

    CAS  Article  Google Scholar 

  4. 4

    Malencik, D. A. & Anderson, S. R. Biochemistry 23, 2420–2427 (1984).

    CAS  Article  Google Scholar 

  5. 5

    Cox, J. A., Comte, M., Fitton, J. E. & DeGrado, W. F. J. biol. Chem. 260, 2527–2534 (1985).

    CAS  PubMed  Google Scholar 

  6. 6

    Maulet, Y. & Cox, J. A. Biochemistry 22, 5680–5686 (1983).

    CAS  Article  Google Scholar 

  7. 7

    McDowell, L, Sanyal, G. & Prendergast, F. G. Biochemistry 24, 2979–2984 (1985).

    CAS  Article  Google Scholar 

  8. 8

    DeGrado, W. F., Prendergast, F. G., Wolfe, H. R. Jr & Cox, J. A. J. Celliochem. 29, 83–93 (1985).

    CAS  Google Scholar 

  9. 9

    Lukas, T. J., Burgess, W. H., Prendergast, F. G., Lau, W. & Watterson, D, M. Biochemistry 25, 1458–1464 (1986).

    CAS  Article  Google Scholar 

  10. 10

    Meador, W. E., Means, A. R. & Quiocho, F. A. Science 257, 1251–1255 (1992).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ikura, M., Kay, L. E., Krinks, M. & Bax, A. Biochemistry 30, 5498–5504 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Roth, S. M. et al. Biochemistry 31, 1433–1451 (1992).

    Article  Google Scholar 

  13. 13

    Seeholzer, S. H. et al. in Calcium Binding Proteins in Health and Disease 360–371 (1987).

  14. 14

    Huang, C. Y. Meth. Enzym. 87, 509–525 (1982).

    CAS  Article  Google Scholar 

  15. 15

    Seeholzer, S. H. & Wand, A. J. Biochemistry 28, 4011–4020 (1989).

    CAS  Article  Google Scholar 

  16. 16

    Roth, S. M. et al. Biochemistry 30, 10078–10084 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Ikura, M. et al. Science 256, 632–638 (1992).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Meador, W. E., Means, A. R. & Quiocho, F. A. Science 257, 1251–1254 (1992).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Wade, D. et al. Proc. natn. Acad. Sci. U.S.A. 87, 4761–4765 (1990).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Nomizu, M. et al. J. biol. Chem. 267, 14118–14121 (1992).

    CAS  PubMed  Google Scholar 

  21. 21

    Tomita, U. et al. Biochem. biophys. Res. Commun. 178, 400–406 (1991).

    CAS  Article  Google Scholar 

  22. 22

    deL. Milton, R. C., Milton, S. C. F. & Kent, S. B. H. Science 256, 1445–1448 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Corigliano-Murphy, M. A. et al. Int. J. Pept. Prot. Res. 25, 225–231 (1985).

    CAS  Article  Google Scholar 

  24. 24

    Dintzis, H. M., Symer, D. E., Dintzis, R. Z., Zawadzke, L. E. & Berg, J. M. Proteins 16, 306–308 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Terwilliger, T. C., Weissman, L. & Eisenberg, D. Biophys. J. 37, 353–361 (1982).

    CAS  Article  Google Scholar 

  26. 26

    Terwilliger, T. C. & Eisenberg, D. J. biol. Chem. 257, 6016–6022 (1982).

    CAS  PubMed  Google Scholar 

  27. 27

    Bax, A., Ikura, M., Kay, L. E., Torchia, D. A. & Tschudin, R. J. magn. Res. 86, 304–318 (1982).

    ADS  Google Scholar 

  28. 28

    Marion, D., Ikura, M., Tschudin, R. & Bax, A. J. magn. Res. 85, 393–399 (1989).

    ADS  CAS  Google Scholar 

  29. 29

    Ikura, M., Kay, L. E. & Bax, A. Biochemistry 29, 4659–4669 (1990).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fisher, P., Prendergast, F., Ehrhardt, M. et al. Calmodulin interacts with amphiphilic peptides composed of all D-amino acids. Nature 368, 651–653 (1994).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing