Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation

Abstract

SEVERAL lines of evidence suggest that cyclic GMP might be involved in long-term potentiation (LTP) in the hippocampus1–6. Arachidonic acid, nitric oxide and carbon monoxide, three molecules that have been proposed to act as retrograde messengers in LTP7–9, all activate soluble guanylyl cyclase1,10,11. We report here that an inhibitor of guanylyl cyclase blocks the induction of LTP in the CA1 region of hippocampal slices. Conversely, cGMP analogues produce long-lasting enhancement of the excitatory postsyn-aptic potential if they are applied at the same time as weak tetanic stimulation of the presynaptic fibres. The enhancement is spatially restricted, is not blocked by valeric acid (APV), nifedipine, or picrotoxin, and partially occludes LTP. This synaptic enhancement may be mediated by the cGMP-dependent protein kinase (PKG). Inhibitors of PKG block the induction of LTP, and activators of PKG produce activity-dependent long-lasting enhancement. These results suggest that guanylyl cyclase and PKG contribute to LTP, possibly as activity-dependent presynaptic effectors of retrograde messengers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. Science 259, 381–384 (1993).

    Article  ADS  CAS  Google Scholar 

  2. DeVente, J. & Steinbusch, H. W. Acta Histochem. 92, 13–38 (1992).

    Article  CAS  Google Scholar 

  3. Haley, J. E., Wilcox, G. L. & Chapman, P. F. Neuron 8, 211–216 (1992).

    Article  CAS  Google Scholar 

  4. East, S. J. & Garthwaite, J. Neurosci. Lett. 123, 17–19 (1991).

    Article  CAS  Google Scholar 

  5. Chetkovich, D. M., Klann, E. & Sweatt, J. D. Neuro Report 4, 919–922 (1993).

    CAS  Google Scholar 

  6. Hawkins, R. D., Zhuo, M. & Arancio, O. J. Neurobiol. (in press).

  7. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Zhuo, M., Small, S. A., Kandel, E. R. & Hawkins, R. D. Science 260, 1946–1950 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Stevens, C. F. & Wang, Y. Y. Nature 364, 147–149 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Snider, R. M., McKinney, M., Forray, C. & Richelson, E. Proc. natn. Acad. Sci. U.S.A. 81, 3905–3909 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Garthwaite, J., Charles, S. L. & Chess-Williams, R. Nature 326, 385–388 (1988).

    Article  ADS  Google Scholar 

  12. Fleisch, J. H. et al. J. pharmac. exp. Ther. 229, 681–689 (1984).

    CAS  Google Scholar 

  13. Schultz, C. et al. J. biol. Chem. 268, 6316–6322 (1993).

    CAS  PubMed  Google Scholar 

  14. Schulz, S., Yuen, P. S. T. & Garbers, D. L. Trends pharmac. Sci. 12, 116–120 (1991).

    Article  CAS  Google Scholar 

  15. White, R. E. et al. Nature 361, 263–266 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Tsou, K., Snyder, G. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 90, 3462–3465 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Schlichter, D. J., Casnellie, J. E. & Greengard, P. Nature 273, 61–62 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Frey, U., Huang, Y.-Y. & Kandel, E. R. Science 60, 1661–1664 (1993).

    Article  ADS  Google Scholar 

  19. Geiger, J., Nolte, D., Butt, E., Sage, S. O. & Water, U. Proc. natn. Acad. Sci. U.S.A. 89, 1031–1035 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Wigström, H., Gustafsson, B., Huang, Y.-Y. & Abraham, W. C. Acta physiol. scand. 126, 317–319 (1986).

    Article  Google Scholar 

  21. Arancio, O., Kandel, E. R. & Hawkins, R. D. Soc. Neurosci. Abstr. 19, 241 (1993).

    Google Scholar 

  22. Shibuki, K. & Okada, D. Nature 349, 326–328 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Ito, M. & Karachot, L. Neuroreport 1, 129–132 (1990).

    Article  CAS  Google Scholar 

  24. Woody, C. D., Swartz, B. E. & Gruen, E. Brain Res. 158, 373–395 (1978).

    Article  CAS  Google Scholar 

  25. Ito, M. A. Rev. Neurosci. 12, 85–102 (1989).

    Article  CAS  Google Scholar 

  26. Brons, J. F. & Woody, C. D. J. Neurophysiol. 44, 605–615 (1980).

    Article  CAS  Google Scholar 

  27. Squire, L. R. & Zola-Morgan, S. Science 253, 1380–1386 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Zhuo, M., Kandel, E. R. & Hawkins, R. D. Neuro Report (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, M., Hu, Y., Schultz, C. et al. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368, 635–639 (1994). https://doi.org/10.1038/368635a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368635a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing