Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolism of polyhalogenated compounds by a genetically engineered bacterium

Abstract

THE decomposition of organic compounds by bacteria has been studied for almost a century1, during which time selective enrichment culture has generated microoganisms capable of metabolizing thousands of organic compounds. But attempts to obtain pure cultures of bacteria that can metabolize highly halogenated compounds2, a large and important class of pollutants3,4, have been largely unsuccessful. Polyhalogenated compounds are most frequently metabolized by anaerobic bacteria as a result of reductive dehalogenation reactions5, the products of which are typically substrates for bacterial oxygenases6. Complete metabolism of polyhalogenated compounds therefore necessitates the sequential use of anaerobic and aerobic bacteria7. Here we combine seven genes encoding two multi-component oxygenases in a single strain of Pseudomonas which as a result metabolizes polyhalogenated compounds by means of sequential reductive and oxidative reactions to yield non-toxic products. Cytochrome P450cam monooxygenase reduces polyhalogenated compounds8, which are bound at the camphor-binding site9,10, under subatmospheric oxygen tensions9. We find that these reduction products are oxidizable substrates for toluene dioxygenase. Perhalogenated chlorofluorocarbons also act as substrates for the genetically engineered strain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stanier, R. Y., Adelberg, E. A. & Ingraham, J. L. The Microbial World 4th edn (Prentice-Hall, Englewood Cliffs, NJ, 1976).

    Google Scholar 

  2. Wackett, L. P., Logan, M. S. P., Blocki, F. A. & Bao-li, C. Biodegradation 3, 19–36 (1992).

    Article  CAS  Google Scholar 

  3. Anders, M. W. & Pohl, L. R. in Bioactivation of Foreign Compounds (ed. Anders, M. W.) 284–316 (Academic, New York, 1985).

    Google Scholar 

  4. Reineke, W. in Microbial Degradation of Organic Compounds (ed. Gibson, D. T.) 319–360 (Dekker, New York, 1984).

    Google Scholar 

  5. Quenson, J. F., Tiedje, J. M. & Boyd, S. A. Science 242, 752–754 (1988).

    Article  ADS  Google Scholar 

  6. Fox, B. G., Borneman, J. G., Wackett, L. P. & Lipscomb, J. D. Biochemistry 29, 6419–6427 (1990).

    Article  CAS  Google Scholar 

  7. Abramowicz, D. A. Crit. Rev. Biotech. 10, 241–251 (1990).

    Article  CAS  Google Scholar 

  8. Castro, C. E., Wade, R. S. & Belser, N. O. Biochemistry 24, 204–210 (1985).

    Article  CAS  Google Scholar 

  9. Li, S. & Wackett, L. P. Biochemistry 32, 9355–9361 (1993).

    Article  CAS  Google Scholar 

  10. Poulos, T. L. & Raag, R. FASEB J. 6, 674–679 (1992).

    Article  CAS  Google Scholar 

  11. Logan, M. S. P., Newman, L. M., Schanke, C. A. & Wackett, L. P. Biogradation 4, 39–50 (1993).

    Article  CAS  Google Scholar 

  12. Wackett, L. P. & Gibson, D.T. Appl. Environ. Microbiol. 54, 1703–1708 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, S. & Wackett, L. P. Biochem. biophys. Res. Commun. 185, 443–451 (1992).

    Article  CAS  Google Scholar 

  14. Leong, S. A., Ditta, G. S. & Helinski, D. R. J. biol. Chem. 257, 8724–8730 (1982).

    CAS  PubMed  Google Scholar 

  15. Wackett, L. P., Brusseau, G. A., Householder, S. R. & Hanson, R. S. Appl. Environ. Microbiol. 55, 2960–2964 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Paulsen, M.D., Filiprovic, D., Sligar, S. G. & Ornstein, R. L. Prot. Sci. 2, 357–365 (1993).

    Article  CAS  Google Scholar 

  17. Ornstein, R. L. Proceedings of Hazmacon (ed. Bursztynsky, T.) 470–480 (J.T. Litho, Oakland, CA, 1991).

    Google Scholar 

  18. Babbitt, P. C. et al. Biochemistry 31, 5594–5604 (1992).

    Article  CAS  Google Scholar 

  19. Gibson, D. T., Zylstra, G. J. & Chauhan, S. in Pseudomonas: Biotransformations, Pathogenesis and Emerging Biotechnology (eds Silver, S., Chakrabarty, A. M., Iglewski, P, & Kaplan, S.) 121–132 (ASM, Washington DC, 1990).

    Google Scholar 

  20. Ensley, B. D. et al. Science 222, 167–169 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Zylstra, G. J. & Gibson, D. T. Genet. Eng. 13, 183–203 (1991).

    Article  CAS  Google Scholar 

  22. Bagdasarian, M. M. et al. Gene 16, 237–247 (1981).

    Article  CAS  Google Scholar 

  23. Bagdasarian, M. M., Amann, E., Lurz, R., Rückert, B. & Bagdasarian, M. Gene 26, 273–282 (1984).

    Article  Google Scholar 

  24. Bradshaw, W. H., Conrad, H. E., Corey, E. J., Gunsalus, I. C. & Lednicer, D. J. Am. chem. Soc. 81, 5507 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wackett, L., Sadowsky, M., Newman, L. et al. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature 368, 627–629 (1994). https://doi.org/10.1038/368627a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368627a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing