Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for the Ras signalling pathway in synaptic transmission and long-term memory

Abstract

Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation1. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm (refs 2,3,4), induces Ras signalling in response to Ca2+ influx5 and activation of G-protein-coupled receptors in vitro6, suggesting that it plays a role in neurotransmission and plasticity in vivo7. Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact. Electrophysiological measurements in the basolateral amygdala reveal that long-term plasticity is abnormal in mutant mice. In contrast, Ras-GRF mutants do not reveal major deficits in spatial learning tasks such as the Morris water maze, a test that requires hippocampal function. Consistent with apparently normal hippocampal functions, Ras-GRF mutants show normal NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation in this structure. These results implicate Ras-GRF signalling via the Ras/MAP kinase pathway in synaptic events leading to formation of long-term memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a targeted mutation in the mouse Ras-GRF gene.
Figure 2: Ras-GRF mutant mice do not show gross morphological abnormalities in the brain.
Figure 3: Impaired memory consolidation in Ras-GRF mutant mice during fear conditioning tests.
Figure 4: Hippocampal-dependent behaviour appears to be normal in Ras-GRF mutant mice.
Figure 5: Figure 5 Impaired synaptic plasticity in the amygdala of Ras-GRF−/− mice.

Similar content being viewed by others

References

  1. Lowy, D. R. & Willumsen, B. M. Function and regulation of Ras. Annu. Rev. Biochem. 62, 851–891 (1993).

    Article  CAS  Google Scholar 

  2. Martegani, E. et al. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO 11, 2151–2157 (1992).

    Article  CAS  Google Scholar 

  3. Cen, H., Papageorge, A. G., Zippel, R., Lowy, D. R. & Zhang, K. Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl and CDC24. EMBO J. 11, 4007–4015 (1992).

    Article  CAS  Google Scholar 

  4. Shou, C., Farnsworth, B. G. N. & Feig, L. A. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358, 351–354 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Farnsworth, C. L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524–526 (1995).

    Article  Google Scholar 

  6. Mattingly, R. R. & Macara, I. G. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein βγ subunits. Nature 382, 268–272 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236 (1996).

    Article  CAS  Google Scholar 

  8. Marshall, C. in Guidebook to the Small GTPases(eds Zerial, M. & Huber, L. A.) 65–73 (Oxford Univ. Press, (1995)).

    Google Scholar 

  9. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).

    Article  Google Scholar 

  11. Zippel, R. et al. Ras-GRF, the activator of Ras, is expressed preferentially in mature neurons of the central nervous system. Mol. Brain Res. 48, 140–144 (1997).

    Article  CAS  Google Scholar 

  12. Sturani, E. et al. The Ras guanine nucleotide exchange factor is present at the synaptic junction. Exp. Cell Res. 235, 117–123 (1997).

    Article  CAS  Google Scholar 

  13. Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet. 14, 106–109 (1996).

    Article  CAS  Google Scholar 

  14. Celio, M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475 (1990).

    Article  CAS  Google Scholar 

  15. Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  ADS  Google Scholar 

  16. Schutz, R. A. & Izquierdo, I. Effect of brain lesions on rat shuttle behavior in four different tests. Physiol. Behav. 23, 97–105 (1979).

    Article  CAS  Google Scholar 

  17. Cahill, L. & McCaugh, J. L. Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement. Behav. Neurosci. 104, 532–543 (1990).

    Article  Google Scholar 

  18. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Morris, R. G. M. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  Google Scholar 

  20. Müller, U. et al. Behavioral and anatomical deficits in mice homozygous for a modified β-amyloid precursor protein gene. Cell 79, 755–765 (1994).

    Article  Google Scholar 

  21. Olton, D. S., Walker, J. A. & Gage, F. H. Hippocampal connections and spatial discrimination. Brain Res. 139, 215–308 (1978).

    Article  Google Scholar 

  22. Martinez, J. L. & Derrick, B. E. Long-term potentiation and learning. Annu. Rev. Psychol. 47, 173–203 (1996).

    Article  Google Scholar 

  23. Chapman, P. F., Kairiss, E. W., Keenan, C. L. & Brown, T. H. Long-term synaptic potentiation in the amygdala. Synapse 6, 271–278 (1990).

    Article  CAS  Google Scholar 

  24. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  25. LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychol. 46, 209–235 (1995).

    Article  CAS  Google Scholar 

  26. Maren, S. & Fanselow, M. S. The amygdala and fear conditioning: has the nut been cracked? Neuron 16, 237–240 (1996).

    Article  CAS  Google Scholar 

  27. Chapman, P. F. & Bellavance, L. L. Induction of long-term potentiation in the basolateral amygdala does not depend on NMDA receptor activation. Synapse 11, 310–318 (1992).

    Article  CAS  Google Scholar 

  28. Watanabe, Y., Ikenaya, Y., Saito, H. & Abe, K. Roles of GABA(A), NMDA and muscarinic receptors in induction of long-term potentiation in the medial and lateral amygdala in vitro. Neurosci. Res. 21, 317–322 (1995).

    Article  CAS  Google Scholar 

  29. Mayford, M., Abel, T. & Kandel, E. R. Transgenic approaches to cognition. Curr. Opin. Neurobiol. 5, 141–148 (1995).

    Article  CAS  Google Scholar 

  30. Bourtchuladze, B. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Casagranda for her help with ES cell work, A. Plück, K. Brennan and M.Lemaistre for generating germline chimaeras from the second independent ES cell clone, K.-P. Giese and A. Silva for providing their Ras-GRF mouse mutant strain before publication, R. Morris, R. Zippel, E.Martegani, L. Alberghina, A. Oliverio and P. Orban for critically reading the manuscript and F. Peverali for helping with artwork. R.B. was supported by a long-term Human Frontier Science Program Organization (HFSPO) postdoctoral fellowship, L.M. by a long-term EMBO fellowship, S.G.N.G. and C.H. by the Wellcome Trust, and A.R. by BBSRC. The work was partially supported by the Italian Association for Cancer Research (AIRC), by Progetto Finalizzato ACRO of the Italian National Research Council (CNR) and by CEE (to E.S.), by the Swiss National Science Foundation (to H.-P.L. and D.P.W.), by HFSPO (to H.-P.L. and S.G.N.G.) and by MRC (to P.F.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rdiger Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brambilla, R., Gnesutta, N., Minichiello, L. et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281–286 (1997). https://doi.org/10.1038/36849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36849

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing