Letter | Published:

An RNA polymerase II holoenzyme responsive to activators

Nature volume 368, pages 466469 (31 March 1994) | Download Citation

Subjects

Abstract

RNA POLYMERASE II requires multiple general transcription factors to initiate site-specific transcription1–3. These proteins can assemble in an ordered fashion onto promoter DNA in vitro2–8, and such ordered assembly may occur in vivo (Fig. la). Some general transcription factors can interact with RNA polymerase II in the absence of DNA3,9–15, however, suggesting that RNA polymerase II may also assemble into a multi-component complex containing a subset of initiation factors before binding to promoter DNA (Fig. Ib). Here we present evidence from the yeast Saccharo-myces cerevisiae for such an RNA polymerase II holoenzyme, a multi-subunit complex containing roughly equimolar amounts of RNA polymerase II, a subset of general transcription factors, and SRB regulatory proteins. Transcription by this holoenzyme is stimulated by the activator protein GAL4-VP16, a feature not observed with purified RNA polymerase II and general transcription factors alone. We propose that the holoenzyme is a form of RNA polymerase II readily recruited to promoters in vivo.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & A. Rev. Biochem. 59, 711–754 (1990).

  2. 2.

    & Curr. Opin. Cell Biol. 4, 488–495 (1992).

  3. 3.

    & A. Rev. Biochem. 62, 161–190 (1993).

  4. 4.

    , , & Nature 301, 680–686 (1983).

  5. 5.

    , & J. biol. Chem. 259, 2509–2516 (1984).

  6. 6.

    , & Science 241, 1335–1338 (1988).

  7. 7.

    , , & Cell 56, 549–561 (1989).

  8. 8.

    , & J. biol. Chem. 267, 2786–2793 (1992).

  9. 9.

    , & J. biol. Chem. 260, 10353–10360 (1985).

  10. 10.

    , & Molec. cell. Biol. 9, 1465–1475 (1989).

  11. 11.

    , & J. biol. Chem. 265, 5629–5634 (1990).

  12. 12.

    et al. Nucleic Acids Res. 18, 4843–4849 (1990).

  13. 13.

    et al. J. biol. Chem. 266, 20940–20945 (1991).

  14. 14.

    , & J. biol. Chem. 267, 23388–23392 (1992).

  15. 15.

    , , , & Proc. natn. Acad. Sci. U.S.A. 89, 11292–11296 (1992).

  16. 16.

    , , & Cell 73, 1367–1375 (1993).

  17. 17.

    , , & Cell 69, 883–894 (1992).

  18. 18.

    , & J. biol. Chem. 267, 23383–23387 (1992).

  19. 19.

    , & J. biol. Chem. 267, 23376–23382 (1992).

  20. 20.

    , & Cell 68, 977–988 (1992).

  21. 21.

    , & Science 267, 1389–1391 (1992).

  22. 22.

    & Cell 73, 533–540 (1993).

  23. 23.

    , & Science 255, 1127–1132 (1992).

  24. 24.

    et al. Cell 69, 871–881 (1993).

  25. 25.

    , , , & Nature 350, 436–438 (1991).

  26. 26.

    , , , & Proc. natn. Acad. Sci. U.S.A. 89, 7659–7663 (1992).

  27. 27.

    , & J. biol. Chem. 264, 19621–19629 (1989).

  28. 28.

    & J. biol. Chem. 265, 13165–13173 (1990).

  29. 29.

    , , & Science 246, 661–664 (1989).

  30. 30.

    , , & Genes Dev. 5, 2431–2440 (1991).

Download references

Author information

Affiliations

  1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA

    • Anthony J. Koleske
  2. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Richard A. Young

Authors

  1. Search for Anthony J. Koleske in:

  2. Search for Richard A. Young in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/368466a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.