Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct imaging of reptation for semiflexible actin filaments

Abstract

ACCORDING to the reptation model of polymer diffusion1, a polymer chain exhibits snake-like motion through the entangled mesh of surrounding molecules, in which the undulations of the chain are restricted to a tubelike region2. The reptation model can account for many of the dynamic properties of entangled polymer solutions and melts, and has received support from observations of block copolymer diffusion across an interface3; but reptative motion has not previously been imaged directly4,5. Here we report such a direct observation of reptation, obtained by video microscopy of fluorescently labelled single, semiflexible filaments of actin in a solution of unlabelled actin filaments. From the restricted thermal undulations of these filaments we can measure the diameter of the confining tube, and we also observe the characteristic thermally excited sliding of the filament out of the end of the tube. We find that the chain self-diffusion coefficient decreases approximately linearly as the filament length increases, in agreement with the reptation model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. de Gennes, P. G. J. chem. Phys. 55, 572–579 (1971).

    Article  ADS  Google Scholar 

  2. Edwards, S. F. Proc. phys. Soc. 92, 9–13 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Russell, T. P. et al. Nature 365, 235–237 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Higgins, J. & McLeish, T. Nature 365, 205–206 (1993).

    Article  ADS  Google Scholar 

  5. Lodge, T. P., Rotstein, N. A. & Prager, S. Adv. chem. Phys. 79, 1–132 (1990).

    CAS  Google Scholar 

  6. Sackmann, E. Macromolec. Chem. Phys. 194, 7–28 (1994).

    Article  Google Scholar 

  7. Alberts, B. et al. Molecular Biology of the Cell 2nd edn (Garland, New York, 1989).

    Google Scholar 

  8. Kaufmann, S., Käs, J., Goldmann, W. H., Sackmann, E. & Isenberg, G. FEBS Lett. 314, 203–205 (1992).

    Article  CAS  Google Scholar 

  9. Honda, H., Nagashima, H. & Asakura, S. J. molec. Biol. 191, 131–133 (1986).

    Article  CAS  Google Scholar 

  10. Semenov, A. N. J. chem. Soc., Faraday Trans. 2 82, 317–329 (1986).

    Article  CAS  Google Scholar 

  11. de Gennes, P. G., Pincus, P., Velasco, R. M. & Brochard, F. J. Phys., Paris 37, 1461–1473 (1976).

    Article  CAS  Google Scholar 

  12. Graessley, W. W. J. polym. Sci. 13, 17–34 (1980).

    Google Scholar 

  13. Schmidt, C., Bärmann, M., Isenberg, G. & Sackmann, E. Macromolecules 22, 3638–3649 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Janmey, P. A. et al. Biochemistry 27, 8218–8227 (1988).

    Article  CAS  Google Scholar 

  15. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics 2nd edn (Clarendon, Oxford, 1988).

    Google Scholar 

  16. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn Part 1 544–547 (Pergamon, Oxford, 1980).

    Google Scholar 

  17. Käs, J., Strey, H., Bärmann, M. & Sackmann, E. Europhys. Lett. 21, 865–870 (1993).

    Article  ADS  Google Scholar 

  18. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Wendel, H. & Noolandi, J. Macromolecules 15, 1318–1320 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käs, J., Strey, H. & Sackmann, E. Direct imaging of reptation for semiflexible actin filaments. Nature 368, 226–229 (1994). https://doi.org/10.1038/368226a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368226a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing