Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of localized DNA flexibility

Abstract

THE bending and flexibility of DNA are important in packaging, recombination and transcription1–3. Bending decreases electrophoretic mobility in a manner depending on bend position within a fragment (circular permutation4) and on the distance between bends (phasing analysis5,6). Bending can also affect DNA ring closure (cyclization7–10). The lack of a complete theory for the mechanism of gel retardation hampers measurement of bend magnitudes by electrophoresis, whereas cyclization is done entirely in solution and is well understood theoretically9. Disagreements between bend angles estimated by the two electrophoretic assays have been ascribed to DNA flexibility11. Here we test this interpretation using an internal loop as a model flexible locus. Whereas the circular permutation and helical phasing experiments are only subtly affected by the loop, DNA cyclization kinetics detects and quantifies substantial increases in torsional and bending flexibility. Furthermore, the results support a functional role for the stress of DNA bending in inducing base-pair opening12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crothers, D. M. & Steitz, T. A. in Transcriptional Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 501–534 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  2. Drew, H. R. & Travers, A. A. J. molec. Biol. 186, 773–790 (1985).

    Article  CAS  Google Scholar 

  3. Goodman, S. D. & Nash, H. A. Nature 341, 251–254 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Zinkel, S. S. & Crothers, D. M. Nature 328, 178–181 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Salvo, J. J. & Grindley, N. D. F. Nucleic Acids Res. 15, 9771–9779 (1987).

    Article  CAS  Google Scholar 

  7. Hodges-Garcia, Y., Hagerman, P. J. & Pettijohn, D. E. J. biol. Chem. 264, 14621–14623 (1989).

    CAS  PubMed  Google Scholar 

  8. Kotlarz, D., Fritsch, A. & Buc, H. EMBO J. 5, 799–803 (1986).

    Article  CAS  Google Scholar 

  9. Crothers, D. M., Drak, J., Kahn, J. D. & Levene, S. D. Meth. Enzym. 212, 1–29 (1992).

    Google Scholar 

  10. Kahn, J. D. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 89, 6343–6347 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Kerppola, T. K. & Curran, T. Science 254, 1210–1214 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Ramstein, J. & Lavery, R. Proc. natn. Acad. Sci. U.S.A. 85, 7231–7235 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Thompson, J. F. & Landy, A. Nucleic Acids Res. 16, 9687–9705 (1988).

    Article  CAS  Google Scholar 

  14. Levene, S. D. & Zimm, B. H. Science 245, 396–399 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Zimm, B. H. & Lumpkin, O. Macromolecules 26, 226–234 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Lerman, L. S. & Silverstein, K. Meth. Enzym. 155, 482–501 (1987).

    Article  CAS  Google Scholar 

  17. Werel, W., Schickor, P. & Heumann, H. EMBO J. 10, 2589–2594 (1991).

    Article  CAS  Google Scholar 

  18. Drak, J. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 88, 3074–3078 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Zinkel, S. S. & Crothers, D. M. Biopolymers 29, 29–38 (1990).

    Article  CAS  Google Scholar 

  20. Koo, H.-S., Drak, J., Rice, J. A. & Crothers, D. M. Biochemistry 29, 4227–4234 (1990).

    Article  CAS  Google Scholar 

  21. Olson, W. K., Marky, N. L., Jernigan, R. L. & Zhurkin, V. B. J. molec. Biol. 232, 530–551 (1993).

    Article  CAS  Google Scholar 

  22. Zhurkin, V. B., Ulyanov, N. B., Gorin, A. A. & Jernigan, R. L. Proc. natn. Acad. Sci. U.S.A. 88, 7046–7050 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Shore, D. & Baldwin, R. L. J. molec. Biol. 170, 957–981 (1983).

    Article  CAS  Google Scholar 

  24. Crothers, D. M. & Spatz, H. C. Biopolymers 10, 1949–1972 (1971).

    Article  CAS  Google Scholar 

  25. Hagerman, P. J. & Ramadevi, V. A. J. molec. Biol. 212, 351–362 (1990).

    Article  CAS  Google Scholar 

  26. Levene, S. D. & Crothers, D. M. J. molec. Biol. 189, 61–72 (1986).

    Article  CAS  Google Scholar 

  27. Travers, A. A. CRC Crit. Rev. Biochem. 22, 181–219 (1987).

    Article  CAS  Google Scholar 

  28. Gille, H., Egan, J. B., Roth, A. & Messer, W. Nucleic Acids Res. 19, 4167–4172 (1991).

    Article  CAS  Google Scholar 

  29. Hwang, D. S. & Kornberg, A. J. biol. Chem. 267, 23083–23086 (1992).

    CAS  PubMed  Google Scholar 

  30. Liu-Johnson, H.-N., Gartenberg, M. & Crothers, D. M. Cell 47, 995–1005 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahn, J., Yun, E. & Crothers, D. Detection of localized DNA flexibility. Nature 368, 163–166 (1994). https://doi.org/10.1038/368163a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368163a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing