Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cell initiating human acute myeloid leukaemia after transplantation into SCID mice


MOST human acute myeloid leukaemia (AML) cells have limited proliferative capacity, suggesting that the leukaemic clone may be maintained by a rare population of stem cells1–5. This putative leukaemic stem cell has not been characterized because the available in vitro assays can only detect progenitors with limited proliferative and replating potential4–7. We have now identified an AML-initiating cell by transplantation into severe combined immune-deficient (SCID) mice. These cells homed to the bone marrow and proliferated extensively in response to in vivo cytokine treatment, resulting in a pattern of dissemination and leukaemic cell morphology similar to that seen in the original patients. Limiting dilution analysis showed that the frequency of these leukaemia-initiating cells in the peripheral blood of AML patients was one engraftment unit in 250,000 cells. We fractionated AML cells on the basis of cell-surface-marker expression and found that the leukaemia-initiating cells that could engraft SCID mice to produce large numbers of colony-forming progenitors were CD34+CD38; however, the CD34+CD38+ and CD34 fractions contained no cells with these properties. This in vivo model replicates many aspects of human AML and defines a new leukaemia-initiating cell which is less mature than colony-forming cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Sawyers, C., Denny, C. & Witte, O. Cell 64, 337–350 (1991).

    Article  CAS  Google Scholar 

  2. Fearon, E., Burke, P., Schiffer, C., Zehnbauer, B. & Vogelstein, B. New Engl. J. Med. 315, 15–24 (1986).

    Article  CAS  Google Scholar 

  3. Keinänen, M., Griffin, J., Bloomfield, C., Machnicki, J. & de la Chapelle, A. New Engl. J. Meet. 318 1153–1158 (1988).

    Article  Google Scholar 

  4. Griffin, J. & Löwenberg, B. Blood 68, 1185–1195 (1986).

    CAS  PubMed  Google Scholar 

  5. Grier, H. & Civin, C. in Hematology of Infancy and Childhood (eds Nathan, D. G. & Oski, F. A.) 1288–1318 (Saunders, Philadelphia, 1993).

    Google Scholar 

  6. McCulloch, E., Izaguirre, C., Chang, L. & Smith, L. J. cell. Physiol. Suppl. 1, 103–111 (1982).

    Article  CAS  Google Scholar 

  7. Löwenberg, B. & Touw, I. Blood 81, 281–292 (1993).

    PubMed  Google Scholar 

  8. Kamel-Reid, S. & Dick, J. E. Science 242, 1706–1709 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Lapidot T. et al. Science 255, 1137–1141 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Kamel-Reid, S. et al. Science 246, 1597–1600 (1991).

    Article  ADS  Google Scholar 

  11. Kamel-Reid, S. et al. Blood 78, 2973–2981 (1991).

    CAS  PubMed  Google Scholar 

  12. Dick, J., Lapidot, T. & Pflumio, F. Immun. Rev. 124, 25–43 (1991).

    Article  CAS  Google Scholar 

  13. Cesano, A. et al. Oncogene 7, 827–836 (1992).

    CAS  PubMed  Google Scholar 

  14. Sawyers, C., Gishizky, M., Quan, S., Golde, D. & Witte, O. Blood 79, 2089–2098 (1992).

    CAS  PubMed  Google Scholar 

  15. De Lord, C. et al. Expl Hemat. 19, 991–993 (1991).

    CAS  Google Scholar 

  16. Civin, C. et al. J. Immun. 133, 157–165 (1984).

    CAS  PubMed  Google Scholar 

  17. Terstappen, L. et al. Leukemia 6, 993–1000 (1992).

    CAS  PubMed  Google Scholar 

  18. Terstappen, L., Huang, s., Safford, M., Lansdorp, P. & Loken, M. Blood 77, 1218–1227 (1991).

    CAS  PubMed  Google Scholar 

  19. Coulombel, L., Eaves, C., Kalousek, D., Gupta, C. & Eaves, A. J. clin. Invest. 75, 961–969 (1985).

    Article  CAS  Google Scholar 

  20. Schiró, R. et al. Blut 61, 267–270 (1990).

    Article  Google Scholar 

  21. Brady, G., Barbara, M. & Iscove, N. Meth. molec. cell. Biol. 2, 17–25 (1990).

    CAS  Google Scholar 

  22. Bennett, J. et al. Br. J. Haemal 33, 451–458 (1976).

    Article  CAS  Google Scholar 

  23. Waye, S. & Willard, H. Molec. cell. Biol. 6, 3156–3165 (1986).

    Article  CAS  Google Scholar 

  24. Porter, E. & Berry, R. Brit. J. Cancer 17, 583–595 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapidot, T., Sirard, C., Vormoor, J. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing