Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assessing the pyroclastic flow hazard at Vesuvius

Abstract

IN large eruptions, Vesuvius has generated catastrophic avalanches of tephra and hot gases, such as those that destroyed Pompei and Herculaneum in AD 79, and Torre del Greco and surrounding towns in 16311,12. These avalanches (pyroclastic surges and flows) are produced from collapses of the eruptive column, and can travel at >100 m s-1, with temperatures exceeding 800 °C. In 1944 Vesuvius ended its most recent cycle of activity, which had begun with the explosive eruption of 1631. Here we use numerical simulations to assess the hazards posed by the pyroclastic flows that are likely to accompany the onset of the next cycle of activity. We examine three different scales of eruption, and use vent conditions established by modelling magma ascent along the conduit13,14. Our results indicate that large- and medium-scale eruptions can produce complete destruction in the 7 km radius around the volcano (an area in which one million people live and work) in about 15 minutes or less, and that only small-scale eruptions can be arrested by the topographic relief of Monte Somma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lirer, L., Pescatore, T., Booth, B. & Walker, G. P. L. Geol. Soc. Am. Bull. 84, 759–772 (1973).

    ADS  Article  Google Scholar 

  2. 2

    Sheridan, M. F., Barberi, F., Rosi, M. & Santacroce, R. Nature 289, 282–285 (1981).

    ADS  Article  Google Scholar 

  3. 3

    Sigurdsson, H., Cashdollar, S. & Sparks, R. S. J. Am. J. Archeol. 86, 39–51 (1982).

    Article  Google Scholar 

  4. 4

    Santacroce, R. J. Volcan. geotherm. Res. 17, 237–248 (1983).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sigurdsson, H., Carey, S., Cornell, W. & Pescatore, T. Nat. Geogr. Res. 1, 332–387 (1985).

    Google Scholar 

  6. 6

    Arnó, V. et al. in Somma-Vesuvius (ed. Santacroce, R.) Vol. 114, 53–103 (CNR Quaderni, Roma, 1987).

    Google Scholar 

  7. 7

    Carey, S. & Sigurdsson, H. Geol. Soc. Am. Bull. 99, 303–314 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Santacroce, R. (ed.) Somma-Vesuvius Vol. 114 (CNR Quaderni, Roma, 1987).

  9. 9

    Barberi, F. et al. J. Volcan. geotherm. Res. 38, 287–307 (1989).

    ADS  Article  Google Scholar 

  10. 10

    Sigurdsson, H., Cornell, W. & Carey, S. Nature 345, 519–521 (1990).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Rosi, M., Principe, C. & Vecci, R. J. Volcan. geotherm. Res. (in the press).

  12. 12

    Dobran, F. Global Volcanic Simulation of Vesuvius (Giardini, Pisa, 1993).

    Google Scholar 

  13. 13

    Papale, P. & Dobran, F. J. Volcan. geotherm. Res. 58, 101–132 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dobran, F., Neri, A. & Macedonio, G. J. geophys. Res. 98, 4231–4259 (1993).

    ADS  Article  Google Scholar 

  15. 15

    Macedonio, G., Pareschi, M. T. & Santacroce, R. J. Volcan. geotherm. Res. 40, 327–342 (1990).

    ADS  Article  Google Scholar 

  16. 16

    Barberi, F., Navarro, J. M., Rosi, M., Santacroce, R. & Sbrana, A. Rend. Soc. Ital. Miner. Petrol. 43, 901–926 (1988).

    Google Scholar 

  17. 17

    Civetta, L., Galati, R. & Santacroce, R. Bull. volcan. 53, 287–300 (1991).

    ADS  Article  Google Scholar 

  18. 18

    Civetta, L. & Santacroce, R. Acta vulcan. 2, 147–159 (1992).

    Google Scholar 

  19. 19

    Rosi, M., Santacroce, R. & Sheridan, M. in Somma-Vesuvius (ed. Santacroce, R.) Vol. 114, 197–220 (CNR Quaderni, Roma, 1987).

    Google Scholar 

  20. 20

    Dobran, F. J. volcan. geotherm. Res. 49, 285–311 (1992).

    ADS  Article  Google Scholar 

  21. 21

    Wohletz, K. H., McGetchin, T. R., Sandford, M. T. & Jones, E. M. J. geophys. Res. 89, 8269–8285 (1984).

    ADS  Article  Google Scholar 

  22. 22

    Valentine, G. A., Wohletz, K. H. & Kieffer, S. W. Geol. Soc. Am. Bull. 104, 154–165 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Cas, R. A. F. & Wright, J. V. Volcanic Successions: Modern and Ancient (Chapman & Hall, London, 1987).

    Book  Google Scholar 

  24. 24

    Barberi, F. et al. Bull. Volcan. 44, 295–315 (1981).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Cioni, R. et al. (abstr.) Annual Meeting CNR-Gruppo Nazionale per la Vulcanologia, 8–10 June, Rome (Giardini, Pisa, 1993).

    Google Scholar 

  26. 26

    Neri, A. & Dobran, F. J. geophys. Res. (submitted).

  27. 27

    Giordano, G. & Dobran, F. J. Volcan. geotherm. Res. (in the press).

  28. 28

    Dobran, F. Int. Symp. on Large Explosive Eruptions (Accademia Nazionale dei Lincei, 24–25 May, Rome (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dobran, F., Neri, A. & Todesco, M. Assessing the pyroclastic flow hazard at Vesuvius. Nature 367, 551–554 (1994). https://doi.org/10.1038/367551a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing