Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum

Abstract

DURING embryogenesis, all insects reach a conserved, or phylotypic, stage at which all future segments are present1,2. Different insects, however, arrive at this stage by overtly different pathways. In the long-germ insect Drosophila melanogaster, segmentation of the entire embryo occurs nearly simultaneously and results from the action of a cascade of transcriptional regulatory factors that operate in the acellular environment of the syncytial blastoderm3,4. In short-germ insects, segmentation occurs in an anterior-to-posterior sequence, within a cellular environment1, and might then be dependent on intercellular signalling5,6. To compare the molecular mechanisms of segmentation, we have isolated a homologue of the Drosophila wingless gene, a mediator of cell–cell communications7–9, from the short-germ beetle Tribolium castaneum. The principal features of wingless expression patterns in Drosophila are conserved in Tribolium, including its early deployment in rostral and caudal domains in the blastoderm, its segmental iteration in cells immediately anterior to cells expressing the engrailed, gene and its later restriction to a ventral sector of the developing appendages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sander, K. Adv. Insect Physiol. 12, 125–138 (1976).

    Article  Google Scholar 

  2. Sander, K. in Development & Evolution (eds Goodwin, B., Holder, N. & Wylie, C.) 137–161 (Cambridge Univ. Press, UK, 1983).

    Google Scholar 

  3. Akam, M. Development 101, 1–22 (1987).

    CAS  Google Scholar 

  4. Ingham, P. Nature 335, 25–34 (1988).

    Article  CAS  ADS  Google Scholar 

  5. Patel, N. in Evolutionary Conservation of Developmental Mechanisms (ed Spradling, A.) 85–110 (Wiley-Liss, New York 1993).

    Google Scholar 

  6. Akam, M. & Dawes, R. Curr. Biology 2 (8), 395–398 (1992).

    Article  CAS  Google Scholar 

  7. Baker, N. Devl. Biol 125, 96–108 (1988).

    Article  CAS  Google Scholar 

  8. Rijsewijk, F. et al. Cell 50, 649–657 (1987).

    Article  CAS  Google Scholar 

  9. Cabrera, C. V., Alonso, M. C., Johnston, P., Phillips, R. G. & Lawrence, P. A. Cell 50, 659–663 (1987).

    Article  CAS  Google Scholar 

  10. Nusse, R. & Varmus, H. E. Cell 69, 1073–1087 (1992).

    Article  CAS  Google Scholar 

  11. Baker, N. EMBO 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

  12. Baker, N. Development 103, 289–298 (1988).

    CAS  PubMed  Google Scholar 

  13. van den Heuvel, M., Nusse, R., Johnston, P. & Lawrence, P. A. Cell 59, 739–749 (1989).

    Article  CAS  Google Scholar 

  14. Ingham, A. & Hidalgo, P. W. Development 117, 283–291 (1993).

    CAS  Google Scholar 

  15. Sommer, R. & Tautz, D. Nature 361, 448–450 (1993).

    Article  CAS  ADS  Google Scholar 

  16. Patel, N., Condron, B. & Zinn, K. Nature 367, 429–134 (1994).

    Article  CAS  ADS  Google Scholar 

  17. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. Nature 331, 73–75 (1988).

    Article  CAS  ADS  Google Scholar 

  18. Martinez-Arias, A., Baker, N. E. & Ingham, P. W. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  19. Cohen, S. M. Nature 343, 173–175 (1990).

    Article  CAS  ADS  Google Scholar 

  20. Simcox, A. A. et al. Development 107, 715–722 (1989).

    CAS  PubMed  Google Scholar 

  21. Struhl G. & Basler, K. Cell 72, 527–540 (1993).

    Article  CAS  Google Scholar 

  22. Couso, J. P., Bate, M. & Martinez-Arias, A. Science 259, 484–489 (1993).

    Article  CAS  ADS  Google Scholar 

  23. Stuart, J. J., Brown, S., Beeman, R. W. & Dennel, R. E. Development 117, 233–243 (1993).

    CAS  PubMed  Google Scholar 

  24. Knipple, D. C., Seifert, E., Rosenberg, U. B., Preiss, A. & Jäckle, H. Nature 317, 40–45 (1985).

    Article  CAS  ADS  Google Scholar 

  25. Gaul, U. & Jäckie, H. Cell 50, 639–647 (1987).

    Article  CAS  Google Scholar 

  26. Mitchison, T. J. & Sedat, J. Devl. Biol. 99, 261–264 (1983).

    Article  CAS  Google Scholar 

  27. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  28. Patel, N. H. Kornberg, T. B. & Goodman, C. S. Development 107, 201–212 (1989).

    CAS  PubMed  Google Scholar 

  29. Patel, N. H. et al. Cell 58, 955–968 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, L., Carroll, S. Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367, 460–463 (1994). https://doi.org/10.1038/367460a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing