Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart

Abstract

INHERITED rickettsial symbionts of the genus Wolbachia occur commonly in arthropods and have been implicated in the expression of parthenogenesis1,2, feminization2,3 and cytoplasmic incompatibility phenomena in their respective hosts4–7. Here we use purified Wolbachia from the Asian tiger mosquito, Aedes albopictus, to replace the natural infection of Drosophila simulans by means of embryonic microinjection techniques. The transferred Wolbachia infection behaves like a natural Drosophila infection with regard to its inheritance, cytoskeleton interactions and ability to induce incompatibility when crossed with uninfected flies. The transinfected flies are bidirectionally incompatible with all other naturally infected strains of Drosophila simulans, however, and as such represent a unique crossing type. The successful transfer of this symbiont between distantly related hosts suggests that it may be possible to introduce this agent experimentally into arthropod species of medical and agricultural importance in order to manipulate natural populations genetically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stouthamer, R., Breeuwer, J. A. J., Luck, R. F. & Werren, J. H. Nature 361, 66–68 (1993).

    Article  CAS  ADS  Google Scholar 

  2. Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Proc. R. Soc. Land. B25O, 91–98 (1992).

    ADS  Google Scholar 

  3. Rigaud, T. & Juchault, P. Genetics 133, 247–252 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yen, J. H. & Barr, A. R. Nature 232, 657–658 (1971).

    Article  CAS  ADS  Google Scholar 

  5. Rousset, F., Vautrin, D. & Solignac, M. Proc. R. Soc. Land. B247, 163–168 (1992).

    Article  CAS  ADS  Google Scholar 

  6. Breeuwer, J. A. J. et al. Insect molec. Biol. 1, 25–36 (1992).

    Article  CAS  Google Scholar 

  7. O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L. & Robertson, H. M. Proc. natn. Acad. Sci. U.S.A. 89, 2699–2702 (1992).

    Article  CAS  ADS  Google Scholar 

  8. Breeuwer, J. A. J. & Werren, J. H. Nature 346, 558–560 (1990).

    Article  CAS  ADS  Google Scholar 

  9. Ryan, S. L. & Saul, G. B. Molec. gen. Genet. 103, 29–36 (1968).

    Article  CAS  Google Scholar 

  10. Jost, E. Theor. appl. Genet. 40, 251–256 (1970).

    Article  CAS  Google Scholar 

  11. O'Neill, S. L. & Karr, T. L. Nature 348, 178–180 (1990).

    Article  CAS  ADS  Google Scholar 

  12. Hoffmann, A. A., Turelli, M. & Simmons, G. M. Evolution 40, 692–701 (1986).

    Article  Google Scholar 

  13. Wade, M. J. & Stevens, L. Science 227, 527–528 (1985).

    Article  CAS  ADS  Google Scholar 

  14. Hsiao, C. & Hsiao, T. H. J. invert. Path. 45, 244–246 (1985)

    Article  Google Scholar 

  15. Laven, H. Cold Spring Harb. Symp. quant. Biol. 24, 166–173 (1959)

    Article  CAS  Google Scholar 

  16. Breeuwer, J. A. J. & Werren, J. H. Genetics 135, 565–574 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Montchamp-Moreau, C., Ferveur, J. & Jacques, M. Genetics 129, 399–407 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nigro, L. Heredity 66, 41–45 (1991).

    Article  Google Scholar 

  19. Boyle, L., O'Neill, S. L., Robertson, H. M. & Karr, T. L. Science 260, 1796–1799 (1993).

    Article  CAS  ADS  Google Scholar 

  20. Holton, T. A. & Graham, M. W. Nucleic Acids Res. 19, 1156 (1991).

    Article  CAS  Google Scholar 

  21. Turelli, M. & Hoffmann, A. A. Nature 353, 440–442 (1991).

    Article  CAS  ADS  Google Scholar 

  22. Curtis, C. F. Nature 357, 450 (1992).

    Article  CAS  ADS  Google Scholar 

  23. Beard, C. B., O'Neill, S. L., Tesh, R. B., Richards, F. F. & Aksoy, S. Parasit. Today 9, 179–183 (1993).

    Article  CAS  Google Scholar 

  24. Simon, C., Franke, A. & Martin, A. in Molecular Techniques in Taxonomy (eds Hewitt, G. M., Johnston, A. W. B. & Young, J. P. W.) 329–355 (Springer, Berlin, 1991).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braig, H., Guzman, H., Tesh, R. et al. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367, 453–455 (1994). https://doi.org/10.1038/367453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing