Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion

Abstract

ELUCIDATION of the reactions responsible for the calcium-regulated fusion of secretory granules with the plasma membrane in secretory cells would be facilitated by the identification of participant proteins having known biochemical activities. The successful characterization of cytosolic1–3 and vesicle4,5 proteins that may function in calcium-regulated secretion has not yet revealed the molecular events underlying this process. Regulated secretion consists of sequential priming and triggering steps which depend on ATP and Ca2+, respectively, and require distinct cytosolic proteins6. Characterization of priming-specific factors (PEP proteins) should enable the ATP-requiring reactions to be identified. Here we show that one of the mammalian priming factors (PEP3) is identical to phosphatidylinositol transfer protein (PITP)7. The physiological role of PITP was previously unknown. We also find that SEC14p, the yeast phosphatidylinositol transfer protein which is essential for constitutive secretion8–10, can substitute for PEP3/PITP in priming. Our results indicate that a role for phospholipid transfer proteins is conserved in the constitutive and regulated secretory pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walent, J. H., Porter, B. W. & Martin, T. F. J. Cell 70, 765–775 (1992).

    Article  CAS  Google Scholar 

  2. Morgan, A. & Burgoyne, R. D. Nature 355, 833–836 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Wu, Y. N., Vu, N.-D. & Wagner, P. D. Biochem. J. 285, 697–700 (1992).

    Article  CAS  Google Scholar 

  4. Söllner, T. et al. Nature 362, 318–324 (1993).

    Article  ADS  Google Scholar 

  5. Bennett, M. K. & Scheller, R. H. Proc. natn. Acad. Sci. U.S.A. 90, 2559–2563 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Hay, J. C. & Martin, T. F. J. J. Cell Biol. 119, 139–151 (1992).

    Article  CAS  Google Scholar 

  7. Helmkamp, G. M. Jr, Harvey, M. S., Wirtz, K. W. A. & van Deenen, L. L. M. J. biol. Chem. 249, 6382–6389 (1974).

    CAS  PubMed  Google Scholar 

  8. Bankaitis, V. A., Malehorn, D. E., Emr, S. D. & Greene, R. J. Cell Biol. 108, 1271–1281 (1989).

    Article  CAS  Google Scholar 

  9. Bankaitis, V. A., Aitken, J. R., Cleves, A. E. & Dowhan, W. Nature 347, 561–562 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Aitken, J. F., van Heusden, G. P. H., Temkin, M. & Dowhan, W. J. biol. Chem. 265, 4711–4717 (1990).

    CAS  PubMed  Google Scholar 

  11. Dickeson, S. K. et al. J. biol. Chem. 264, 16557–16564 (1989).

    CAS  PubMed  Google Scholar 

  12. Van Paridon, P. A., Visser, A. J. W. G. & Wirtz, K. W. A. Biochim biophys. Acta 898, 172–180 (1987).

    Article  CAS  Google Scholar 

  13. DiCorleto, P. E., Warach, J. B. & Zilversmit, D. B. J. biol. Chem. 254, 7795–7802 (1979).

    CAS  PubMed  Google Scholar 

  14. Daum, G. & Paltauf, F. Biochim. biophys. Acta 794, 385–391 (1984).

    Article  CAS  Google Scholar 

  15. Szolderits, G., Hermetter, A., Paltauf, F. & Daum, G. Biochim. biophys. Acta 986, 301–309 (1989).

    Article  CAS  Google Scholar 

  16. Phillips, J. H. Biochem. J. 136, 579–587 (1973).

    Article  CAS  Google Scholar 

  17. Husebye, E. S. & Flatmark, T. Biochim. biophys. Acta 968, 261–265 (1988).

    Article  CAS  Google Scholar 

  18. Eberhard, D. A., Cooper, C. L., Low, M. G. & Holz, R. W. Biochem. J. 268, 15–25 (1990).

    Article  CAS  Google Scholar 

  19. Schu, P. V. et al. Science 260, 88–91 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Stack, J. H., Herman, P. K., Schu, P. V. & Emr, S. D. EMBO J. 12, 2195–2204 (1993).

    Article  CAS  Google Scholar 

  21. Anderson, R. A. & Marchesi, V. T. Nature 318, 295–298 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Lassing, I. & Lindberg, U. Nature 314, 472–474 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Janmey, P. A. & Stossel, T. P. Nature 325, 362–364 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Fukami, K. et al. Nature 359, 150–152 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Whitters, E. A., Cleves, A. E., McGee, T. P., Skinner, H. B. & Bankaitis, V. A. J. Cell Biol. 122, 79–94 (1993).

    Article  CAS  Google Scholar 

  26. Cleves, A. E. et al. Cell 64, 789–800 (1991).

    Article  CAS  Google Scholar 

  27. Martin, T. F. J. Meth. Enzym. 168, 225–233 (1989).

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  29. Heukeshoven, J. & Dernick, R. Electrophoresis 6, 103–112 (1985).

    Article  CAS  Google Scholar 

  30. Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, J., Martin, T. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366, 572–575 (1993). https://doi.org/10.1038/366572a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366572a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing